

# **Designing next generation EVs**

## 3-level inverter topology for improved EDU system performance

#### & as an enabler to the use of GaN

2024

**Steve King** Chief Engineer, Electrical Systems



## **Technology highlights**







# hofer powertrain

# 3-LEVEL INVERTER TECHNOLOGY

High-efficiency, noise optimization and drastically minimized losses

## Inverter topologies





\* EMC, NVH, Isolation, THD, Efficiency,



#### 2-level VS. 3-Level





3-level topology introduces limited THD provided to the motor and limited voltage changes during single switching event. THD can be reduced by the factor up to 2.

Source: SEMIKRON Application Note AN-11001

## **3 level topology benefits – NVH behaviour**



#### NVH: improved behaviour

• less excitation of the harmonics due to lower ripple current (lower THD)



Level of noise of E-Motor measured with 2L-Inverter \*



Level of noise of E-Motor measured with 3L-Inverter \*

#### MEASUREMENTS SHOWED THAT NVH IS MORE THAN 25% BETTER, WHEN USING 3L INSTEAD OF 2L

\* source: measured by german university

## 3 level topology benefits – shaft voltage



#### Shaft Voltage: lower

- the additional voltage level leads to lower common mode voltage
- lower voltage on the shaft reduces stress on the bearings because earth leakage current is much smaller





BETTER LEAKAGE-CURRENT BEHAVIOUR OF 3L-INVERTER → REDUCED LEVEL OF COSTLY COUNTERMEASURES

\* source: : measured by german university

## 3 level topology benefits – EMC





#### (((•))) ----

#### **EMC:** better behaviour

- common mode currents are smaller
- high du/dt is not required which means further reduction of common mode currents

#### **3L INVERTER HAS INTRINSICLY BETTER EMC BEHAVIOUR COMPARED WITH 2L INVERTERS**

\* source: : measured by german university

#### **Measurement results – Internal motor**





WLTP simulations based on measurements

Reference vehicle data from OEM: J-low segment, 1980kg, 210km/h max

#### **EDU TOP requirement: energy consumption**



M [Nm] n.D. n.D. 330 n.D. 300 n.D. n.D. n.D. n.D. WLTP area 250 n.D. n.D. n.D. n.D. n.D. Values in % 200 n.D. n.D. n.D. n.D. n.D. n.D. 150 -8.34% -9.50% -3.47% -1.71% -0.85% -0.11% n.D. n.D. -11.68% n.D. 100 1.69% -11.67% -17.16% -5.42% n.D. -9.11% -6.79% n.D. n.D. 50 0.06% -14.60% -25.09% -22.73% -19.66% -18.23% -14.77% n.D. n.D. n.D. n.D. n.D. 30 0.02% -14.82% -25.64% -27.63% -24.65% -23.40% -19.85% n.D. n.D. n.D. -10.52% 15 -15.93% -24.94% -25.97% -27.23% -24.78% -24.81% n.D. n.D. n.D. n.D. 5 -31.82% -22.34% -19.78% -25.65% -29.12% -29.36% -27.69% n.D. n.D. n.D. n.D. 11000 14000 500 2000 3500 5000 6500 8000 9500 12500 15000

#### Delta Motor losses (2L vs. 3L operation) in %

\*n.D. no measurement Data

Minus (green) indicates that 3L operated motor has less losses

#### **Measurement results – Internal motor**



#### **Continuous power analysis**

#### **2L OPERATION**



Speed mean: 5949.93 14min Power(mech) mean: 104.61 kW Cdrreft(Total, AC) mean: 317.89 V<sub>RMS</sub> Voltage(Total, AC) mean: 317.89 V<sub>RMS</sub> Power (Total, AC) mean: 109.35 kW<sub>RMS</sub> φ(Total, AC) mean: 174.01 A<sub>RMS</sub> Voltage(Harm1, AC) mean: 235.85 V<sub>RMS</sub> Power (Harm1, AC) mean: 108.69 kW<sub>RMS</sub> φ(Harm1, AC) mean: 27.84 ° η(Mot) mean : 95.67 % η(Inv) mean : 97.69 % η(Total) mean : 93.46 % I-THD mean : 4.86 % U-THD mean : 6.68 % P-THD mean : 0.48 % MRAML mean : 656.78 W Oil-Feed-Temperature mean : 75.09 °C Copper-Temp max : 132.28 °C Iron-Temp max : 136.37 °C

#### **3L OPERATION**



Torque mean : 232.78 Nm Spaced mean : 5249 861 times Power(mech) mean : 127.98 kW Cerrent(Fotal, AC) mean : 24330 Antes Voltage(Total, AC) mean : 2435 kW<sub>RMS</sub> power (Total, AC) mean : 134.45 kW<sub>RMS</sub> φ(Total, AC) mean : 134.45 kW<sub>RMS</sub> φ(Total, AC) mean : 212.94 A<sub>RMS</sub> Voltage(Harm1, AC) mean : 249.11 V<sub>RMS</sub> Power (Harm1, AC) mean : 134.04 kW<sub>RMS</sub> φ(Harm1, AC) mean : 32.44 ° η(Mot) mean : 95.18 % η(Inv) mean : 97.90 % η(Total) mean : 93.19 % I-THD mean : 5.69 % U-THD mean : 38.00 % P-THD mean : 0.31 % MRAML mean : 6060.57 W IRAML mean : 417.80 W Oil-Feed-Temperature mean : 75.37 °C Copper-Temp max : 158.19 °C Iron-Temp max : 156.03 °C

#### **MORE THAN 20% CONTINUOUS POWER!**

## 3L system cost impact





Assumptions: SUV, 350kW peak power, 100kWh battery

## **Evolution of our 3-Level technology**





## **3L NPC A1-sample**

**Standalone Inverter** 

3x Power-Module Starpower 750V NPC IGBT (custom

Product readiness

made)

3in1 EDU



| A1-                                                                  | SAMPLE                                                             |  |
|----------------------------------------------------------------------|--------------------------------------------------------------------|--|
| No. of Phases                                                        | 3                                                                  |  |
| Peak Performance (10s)                                               | 360 Arms, 260 kW<br>@ 800∨                                         |  |
| Continuous Performance<br>(I <sub>AC,rms,cont</sub> @ 75°C @ 8l/min) | 230 Arms, 165 kW<br>@ 800 V                                        |  |
| Liquid Cooling<br>(water/glycol; 50/50)                              | -40 °C…65 °C<br>-10 °C…55 °C<br>@ 8 l/min without current derating |  |
| PWM Frequency                                                        | 10 kHz*<br>*except hillhold                                        |  |
| LV123 Voltage class                                                  | HV_3 or higher                                                     |  |
| Power Module                                                         | 3L NPC (IGBT)<br>Starpower                                         |  |
| Enclosure                                                            | closed                                                             |  |
| Active short circuit (ASC) function                                  | Not implemented                                                    |  |
| Motor operation                                                      | ASM and PSM                                                        |  |
|                                                                      |                                                                    |  |

## **3L TNPC A1-sample requirements**







## Under development





| A1-sample             |                                                      |  |
|-----------------------|------------------------------------------------------|--|
| Parameter             | Value                                                |  |
| HV DC voltage         | 450 V 925 V                                          |  |
| Peak current (10 sec) | 650 Arms, 470 kW<br>(600 Arms A-sample)              |  |
| Cont. current         | 300 Arms, 220 kW<br>(280 Arms A-sample)              |  |
| E-Machine sensor      | Incremental (ASM)<br>Resolver (PSM)                  |  |
| Functional safety     | ASIL-D prepared                                      |  |
| Cyber-security        | Not included                                         |  |
| EMC                   | CIPRS25, Class 3                                     |  |
| housing               | Milled stand-alone packaging                         |  |
| ASPICE                | CL1                                                  |  |
| μC                    | Infineon Aurix TC2xx, later change to TC3xx possible |  |
| E-machine interface   | ASM, PSM and EESM                                    |  |

#### **GaN- Gallium Nitride**





#### - CONCLUSION

- Performance will be comparable to SiC at reduced costs of the power chips up to factor 2
- GaN technology is expected to be ready for automotive serial production around 2027
- Currently GaN based 800V inverters are only possible with multi-level inverters

## Roadmap for 3L-GaN





01.03.2024

## GaN NPC A0-sample



| A0 SA                                                                | AMPLE                                         |  |
|----------------------------------------------------------------------|-----------------------------------------------|--|
| No. of Phases                                                        | 3                                             |  |
| Peak Performance (10s)                                               | 100 Arms<br>@ 800V                            |  |
| Continuous Performance<br>(I <sub>AC,rms,cont</sub> @ 25°C @ 8l/min) | 70 Arms<br>@ 800∨                             |  |
| Liquid Cooling<br>(water/glycol; 50/50)                              | 25 °C<br>@ 8 l/min without current derating   |  |
| PWM Frequency                                                        | 10 kHz                                        |  |
| LV123 Voltage class                                                  | HV_3 or higher                                |  |
| GaN power Module                                                     | Discrete VisIC V08 device                     |  |
| Enclosure                                                            | open                                          |  |
| Active short circuit (ASC) function                                  | Not implemented                               |  |
| Dimensions                                                           | Based on HED3.0 platform with minor adaptions |  |
| Motor operation                                                      | Induction Motor                               |  |



18

G

 $\supset 00$ 

## GaN NPC A1-sample requirements



#### Electrical performance optimisation

Stray inductance of power module & DC-Link cap.





#### Testing

- Welcome test: Taking Into Operation (TIO)
- Switching characterisation with Multi-Pulse Test (MPT)
- Open loop (U/f) continuous operation (UPF)
  - Thermal characterisation
- Test bench operation with ASM
  - Efficiency
  - WLTP
  - Benchmark (3L IGBT NPC vs 3L SiC NPC vs 3L GaN NPC)

## Under development

| A1-SA                                                    | AMPLE                                                            |  |
|----------------------------------------------------------|------------------------------------------------------------------|--|
| No. of Phases                                            | 3                                                                |  |
| Peak Performance (10s)                                   | 360 Arms<br>@ 800 V                                              |  |
| Continuous Performance<br>(IAC,rms,cont @ 25°C @ 8l/min) | 230 Arms<br>@ 800 V                                              |  |
| Liquid Cooling<br>(water/glycol; 50/50)                  | -40 °C65 °C<br>-10 °C55 °C<br>@ 8 l/min without current derating |  |
| PWM Frequency                                            | 10 kHz                                                           |  |
| LV123 Voltage class                                      | HV_3 or higher                                                   |  |
| GaN power Module                                         | Discrete VisIC V08 device                                        |  |
| Enclosure                                                | open                                                             |  |
| Active short circuit (ASC) function                      | implemented                                                      |  |
| Dimensions                                               | tbd                                                              |  |
| Motor operation                                          | Induction Motor                                                  |  |

## VisIC GaN 800V 3L NPC Power Module





| A1-SAMPLE                                                                 |                                                                         |  |  |
|---------------------------------------------------------------------------|-------------------------------------------------------------------------|--|--|
| No. of Phases                                                             | 3                                                                       |  |  |
| Peak Performance (30s)                                                    | <b>500 Arms</b><br>@ 500-850 V; max. 10 kHz, 65°C, 8 l/min              |  |  |
| Continuous Performance<br>(I <sub>AC,rms,cont</sub> @ 65°C @ 8 l/min)     | <b>300</b> A <sub>rms</sub><br>@ 500-850V, 65°C, 8 l/min                |  |  |
| Liquid Cooling<br>(water/glycol; 50/50)                                   | -40°C…65°C<br>-10°C…55°C @ 8 l/min without current<br>derating          |  |  |
| Ambient Temperature                                                       | -40°C…85°C<br>-10°C…65°C without derating                               |  |  |
| PWM Frequency                                                             | 10-20 kHz                                                               |  |  |
| Electrical Peak Power @<br>(I <sub>AC,rms,peak</sub> ; cos(\$)=0.85; m=1) | 350 kW @ 800 V<br>10 s, max. 10 kHz, cos(φ)=0.85, m=1,<br>65°C, 8 l/min |  |  |
|                                                                           |                                                                         |  |  |

## Summary 3-Level topology



Status

| •= |  |
|----|--|
|    |  |

Efficiency



Cost

- hofer already have over 5 years experience in developing 3L inverters for automotive and are actively supporting a number of European OEMs to accelerate their adoption of the technology
- In our continuing development of this technology we are actively looking for partners who are interested in the advantages that it can bring to their systems
  - E-Motor losses can be reduced by up to 32 %
- Within WLTP Energy consumption of the E-Motor is reduced by 20 %
- WLTP range extension is at 2.4% !
- Continuous power of the motor can be increased by up to 20 %
- 3L technology offers increased system efficiency at reduced system cost in addition to EMC, NVH and isolation benefits
- Cost to efficiency benefits become particularly prevelant when 3L is used as an enabler for GaN in 800V systems



# hofer powertrain

## FORM LITZ WIRE WINDING TECHNOLOGY

Increase of power density and reduction of power losses

## Form Litz Wire Winding (FLW) vs. Hairpin vs. Pull in





Form Litz Wire Winding

## **PSM Benchmark: FLW ↔ Hairpin**



#### Efficiency comparison:



#### **PSM:** Form Litz Wire EM Efficiency [%] 500 • 97.8 max. mot. 400 97.8 max. gen. 96 300 95 200 [orque [Nm] 100 93 92 100 -200 91 -300 -40 -500 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 Speed [rpm]

WLTP scaled (red) vs. orig. WLTP(blue)







#### WLTP cycle was scaled to max. speed and torque. «WLTP cycle on the race track»

|                    | PSM HAIRPIN | PSM FLW   | Delta per cycle | Delta at 90 kWh<br>Battery | Range increase |
|--------------------|-------------|-----------|-----------------|----------------------------|----------------|
| Consumed<br>energy | 14.67 kWh   | 14.38 kWh | 0.29 kWh        | 1.82 kWh                   | 2 %            |
| Loss energy        | 1.69 kWh    | 1.40 kWh  |                 |                            |                |
| 2023-07-13         |             |           | j.              |                            |                |



Form Litz Wire Winding

FA 74001B

## **PSM Benchmark: FLW ↔ Hairpin**



#### PERFORMANCE: CONTINUOUS TORQUE AND POWER



## **Summary – Form litz winding**



#### POWER DENSITY



• Form litz winding has potential to higher power-density for IM & PSM of more than 20%

#### **INDUSTRIALIZATION**



- Form litz winding has potential to reduce material costs by up to 20%
- Industrialization has been constantly improved during the development phases
- Same machinery and tools can now be used as for Hairpin technology



Let us implement the future today



Visit us at www.hofer.de

## Steve King

Chief Engineer - Electrical Systems, hofer powertrain

E-Mail: <a href="mailto:steve.king@hofer-powertrain.co.uk">steve.king@hofer-powertrain.co.uk</a>

#### hofer powertrain

2 Titan Business Centre, Spartan Close, CV34 6RR Warwick **E-Mail:** info@hofer.de

Let us implement the future today

Visit us at www.hofer.de

#### **CONTACT US!**

# Schedule your appointment with our experts!

info@hofer.de

Subscribe to our SPEED Mail

to stay up to speed on powertrain technology!