Driving SiC to its Limit:

Reviewing Advances in SiC MOSFET Technology that will Reduce EV Converter Costs

P.M. Gammon^{1,2}, K. Melnyk¹, A.B. Renz¹, A.J.D. Dawson³, R. Stone³, N. Lophitis ⁴, S. Russell⁵, H. Ayala¹, V. Kotagama¹, N.C. Arnold¹, Q. Cao¹, Y. Qi¹, V.A. Shah¹, M. Antoniou¹ and P.A. Mawby¹

¹⁾ School of Engineering, University of Warwick, Coventry, UK
 ²⁾ PGC Consultancy Ltd, Payton House, Guild Street, Stratford-Upon-Avon, UK
 ³⁾ Exawatt Ltd, Landmark House, 20 Broomgrove Road, Sheffield, UK
 ⁴⁾ Faculty of Engineering, University of Nottingham, Nottingham, UK
 ⁵⁾ TechInsights Inc., 1891 Robertson Road, Suite 500, Ottawa, Canada

FPC2024

29th February 2024

PGC Consultancy Ltd

in linkedin.com/in/petergammon/ peter@pgcconsultancy.com

Silicon Carbide related consultancy services

- Early-stage prototyping trials for new devices and processes
- Commercial SiC Device Testing and Benchmarking, including reliability testing
- **Expert Advice** on the WBG market for finance, M&A and consultancy industries
- Bespoke **cost modelling** including the devices, material and EV applications.
- Sector Commentary and Insight
- Power Electronics Device **Education**

www.pgcconsultancy.com

Sign up to our free blog posts at: www.pgcconsultancy.com/blog

	Peter Gammon	
(P	Mar 16, 2023 • 9 min	
_		

:

PGC

Examining Tesla's 75% SiC Reduction

In 2017, Tesla broke new ground by developing a silicon carbide (SiC) drivetrain inverter for their Model 3, becoming the first electric...

7,560 views 1 comment

Contents

- Introduction Silicon Carbide Cost Drivers
- SiC MOSFET Modelling
- Reducing a MOSFET's Channel and Substrate Resistances
- Reducing a MOSFET's Drift Resistance
- Combined R_{ON,SP} Reduction Model
- Conclusion

Silicon Carbide Cost Drivers

Costs of SiC power devices are rapidly falling driven by a fastexpanding market

Incremental yield improvements:

- 200mm fabs
- Improved gate designs
- Defect density

Expanding Industry

- Multi \$bn expansion
- New entrants
- Expanding supply chain
- Vertical integration
- The rise of China

With thanks to Adam Dawson and Bex Stone at Exawatt - <u>exa-watt.com/power-electronics/</u> for more information

Large area substrates:

- 200 mm wafers
- Yield improvement

Wafering and reuse

- Laser dicing methods
- Wafer splitting
- N times reuse

The currency of die size reduction is specific on-resistance - R_{ON,SP}

The currency of die size reduction is specific on-resistance:

 $R_{ON,SP} = A_{Active} \times R_{ON}$

 A_{Active} is the die area minus the termination and gate pad areas.

$$R_{ON} = R_{Drift} + R_{Ch} + R_{JFET} + R_{Subs} + R_{Other}$$

Lower the $R_{ON,SP}$ components and die size is reduced for given product

SiC MOSFETs a history in R_{ON,SP}

CREE		
CPMF-1200-S080B Z-FET TM Silicon Carbide MOSFET N-Channel Enhancement Mode Bare Die	V _{DS} R _{DS(on)} Q _g	= 1200 V = 80 mΩ = 90.8 nC

(One of) the first 1200V SiC MOSFETs, released by Cree in 2011

	SCTW100N65G2AG					
	Datasheet					
	Automotive-grade silicon carbide Power MOSFET 650 V, 100 A, 20 mΩ (typ., T _J =25 °C), in an HiP247™ package					
(One of) the first 650V SiC MOSFETs, released by ST in 2016						

	N-channel SiC power MOSFET					
-	Vaca	750\/	●Outline TO-247-4L			
-	R _{DS(on)} (Typ.)	13mΩ	-			
	Ι _D ^{*1}	105A				
_	P _D	312W	(1)(2)(3)(4)			

The current lowest R_{ON,SP}: 750V SiC MOSFETs, released by Rohm in 2022

R_{ON,SP} driving cost reduction

The currency of die size reduction is specific onresistance:

 $R_{ON,SP} = A_{Active} \times R_{ON}$

As $R_{ON,SP}$ reduces:

- Dies sizes reduce for a given R_{ON} (15 m Ω)
- More die are produced per wafer
- Fewer die (as a % of wafer) killed by defects
- Cost of good die reduces

Lower *R*_{*ON,SP*} = Higher Yields = Lower costs

Model is a fictional scenario in which die of Ron=15mOhm, are produced on a 150mm substrate with a defect density of 0.25cm⁻², with a \$1500 wafer processing cost

Contents

- Introduction Silicon Carbide Cost Drivers
- SiC MOSFET Modelling
- Reducing a MOSFET's Channel and Substrate Resistances
- Reducing a MOSFET's Drift Resistance
- Combined R_{ON,SP} Reduction Model
- Conclusion

Modelling Rohm's Low R_{ON,SP} MOSFETs

Focussing on Rohm's 4^{th} Gen 750V MOSFET: the device with today's lowest $R_{ON,SP}$.

CK

THE UNIVERSITY OF WARWICK

TCAD Simulation, structure and off-state

With thanks to Steve Russell at TechInsights - <u>srussell@techinsights.com</u> for more information

Modelling Rohm's Low R_{ON,SP} MOSFETs

Varying doping regions, trap profiles, contact resistivities and other features resulted in adequate datasheet fitting.

Datasheet images from 750V Rohm SCT4045DE with Warwick TCAD overlayed

THE UNIVERSITY OF WARWICK

Current density, and resistance components taken from Warwick's TCAD models

Contents

- Introduction Silicon Carbide Cost Drivers
- SiC MOSFET Modelling
- Reducing a MOSFET's Channel and Substrate Resistances
- Reducing a MOSFET's Drift Resistance
- Combined R_{ON,SP} Reduction Model
- Conclusion

R_{subs} accounted for 17% of the Warwick Trench MOSFET model.

Issues at the technology limit:

- During boule growth increasing dopant density too far increases defect density. N_D is typically ≤1e19 cm⁻³.
- This leads to large R_{subs} and back contact resistance!
- Substrates cut to 350 µm to ensure robustness during handling.

Current state of the art processing methods include:

- Back grinding to ~100-180µm
- Laser annealing of back contact

Engineered Substrates: Soitec and SICOXS

A wafer bonding and wafer splitting process is used to transfer a thin mono-SiC layer onto a low resistance poly-SiC substrate.

PolySiC doping >> MonoSiC doping resulting in:

- Much reduced R_{subs,Sp}. Up to 8x lower (per Soitec)
- Very low contact resistance possibly even without the need for laser annealing.

PGC Article: *A deep dive into Soitec's SiC Substrates*, available: www.pgcconsultancy.com/post/rohm-gen-4-a-technical-review

Source: Soitec

Modelling Substrate Resistance reduction

Starting from the Warwick model substrate resistance is lowered by increasing $N_{D,subs}$, and contact resistivity is reduced from 10⁻⁴ Ω .cm² to 10⁻⁵ Ω .cm².

Normalised Specific On-Resistance (%)

80

60

40

20

0

When R_{Subs}=2.5 mOhm:

- R_{ON,SP} reduced by 19%.
- Active area reduced by 9%

Reducing R_{ON,SP}: Channel Resistance

 $R_{Chan} \approx 17\%$ of the Warwick Trench MOSFET model.

Issues at the technology limit:

- Imperfect thermal oxidation; charge trapped in the oxide and the interface; reduced channel mobility.
- Alternative oxidation "solutions" often worse than the "cure", when reliability considered.

Current state of the art processing methods include:

- Post oxide anneals in NO/N₂O; mobilities of ~15-25 cm²/V.s
- Narrow channel regions, thinner oxides, trench designs and reduced cell pitches can provide compensation.

Reducing R_{ON,SP}: Channel Resistance

ALD based High-K dielectrics

Hitachi Energy [1]: "High-K" stacks with low D_{IT} , 1000 yr TDDB reliability and minimal V_{TH} drift.

Newcastle University [2] and Wolfspeed [3] have achieved mobilities beyond $100 \text{ cm}^2/\text{V.s}$ using Al_2O_3 – without needing nitridation anneals

[1] Wirths *et al.*, High-k dielectrics for SiC power MOSFET technology: unrivaled reliability, ruggedness and performance, Hitachi Energy
[2] F. Arith *et al.*, IEEE Electron Device Letters, vol. 39, no. 4, pp. 564, 2018
[3] D. J. Lichtenwalner *et al.*, *Appl. Phys. Lett.*, vol. 95, pp. 152113, 2009.

Reducing R_{ON,SP}: Channel Resistance

ALD based SiO₂ deposition

A SiO₂ ALD Oxide process has been developed at Warwick

A forming gas anneal results in a Si-rich interface.

Low D_{IT} densities of 10¹¹-10¹² cm²/eV result in mobilities of 60 cm²/V.s at room temperature,100 cm²/V.s at 175°C.

Robust TDDB measurements prove process could transfer to commercial devices

Gate voltage (V)

Reducing R_{ON.SP}: Channel Resistance

Modelling Channel Resistance reduction

In the Warwick model, channel mobility is increased by lowering interfacial trap densities (D_{IT})

100-

80.

60-

40

20

0

Original

Normalised Specific On-Resistance (%)

Reducing the traps to achieve μ_{Ch} =60 cm²/V.s resulted in:

- 58% reduction in R_{Ch}
- 10.3% R_{ON.SP} reduction and 5% die active area reduction
- 85% increase in dI_{DS}/dV_{GS}

Contents

- Introduction Silicon Carbide Cost Drivers
- SiC MOSFET Modelling
- Reducing a MOSFET's Channel and Substrate Resistances
- Reducing a MOSFET's Drift Resistance
- Combined R_{ON,SP} Reduction Model
- Conclusion

Drift Region Optimisation

Textbook drift region optimisation considers only the breakdown voltage vs on resistance, leading to the unipolar limit.

Explaining SiC drift region derating

"Derating" involves designing the device to breakdown a margin above the rated voltage.

This reduces the electric field present around the gate oxide.

In our simulations:

- E-field in oxide at 1000V = 1.1 MV/cm
- E-field in oxide at 400V = 0.9 MV/cm

This protects the gate from stress, improving:

- Short circuit withstand time
- Immunity to SEGR during cosmic ray strike

Explaining SiC drift region derating

An over designed drift region provides short circuit immunity.

For cosmic ray immunity, an automotive FIT rate [2] of 0.1 FIT/cm², requires a V_{DS}/V_{aval} of 0.4 [1].

i.e. for a 650V MOSFET to be used in a 400V system: $V_{aval} = 1000V$.

> FIT rates of SiC MOSFETs from Wolfspeed display a universal scaling behaviour [1].

> > [1] D. J. Lichtenwalner et al. "Materials Science Forum. Vol. 924 pp 559, 2018.[2] JEDEC Standard JEP151A, available: www.jedec.org/standards-documents/docs/jep151

Modelling Drift Resistance reduction

In the Warwick model, drift resistance is lowered by incrementally increasing $N_{\mbox{\scriptsize Drift}}$

Increasing N_{Drift} by 33% resulted in:

- 25% reduction in R_{Dr}
- 9.6% R_{ON,SP} reduction and 6% die active area reduction
- **But**: 15% reduction in V_{BD} to 875V.
- Oxide E-field increased 10% to 1.33 MV/cm
- Reduced cosmic ray immunity

JNIVERSITY OF WARWICK

Contents

- Introduction Silicon Carbide Cost Drivers
- SiC MOSFET Modelling
- Reducing a MOSFET's Channel and Substrate Resistances
- Reducing a MOSFET's Drift Resistance
- Combined R_{ON,SP} Reduction Model
- Conclusion

Reducing R_{ON,SP}: A combined low-resistance model

Starting with our original models, we produced a combined low resistance version including:

- 33% higher N_{drift}.
- 8x lower substrate resistivity
- Channel mobility = μ_{Ch} =60 cm²/V.s

Resulting in:

 40% R_{ON,SP} reduction and 23% die active area reduction

• A V_{BD} of 875V.

Paying the price of R_{ON,SP} reduction

Resistance reduction does not come for free.

Last pass short circuit simulations reveal:

• An increased current peak (300 to 400 A/cm²)

Conclusion

- Cost reduction continues to be driven by many factors in the maturing SiC MOSFET market
- New releases of low R_{ON,SP} devices result in cost step changes.
- In the coming drive to trench, innovation in the substrate, and the channel could drive further reductions in R_{ON,SP}.
- Reducing the drift region resistance is possible but relies on optimal gate oxide protection to protect it from high electric fields.
- All R_{ON,SP} reductions increase current density in fault conditions, and therefore reliability and robustness will trade off with resistance reduction.

Nominal Die Cost