Solihull, 28 February 2024 Prof. Bernhard Biermann, Dr. Quirin Kellner, Dr. Daniel Neumann

Prepared for

Day 1 | Hydrogen Session | Imperial Suite

Fev

Fuelling the Future -

Hydrogen as an energy carrier

Hydrogen is the integral part of future energy systems, enabling deep decarbonization

HYDROGEN AS FUTURE ENERGY CARRIER

Large scale green hydrogen plant project Hyphen in Namibia – using wind and solar power; closely connected to Lüderitz port for shipment

Link to Hyphen video: <u>https://hyphenafrica.com</u>

bildings Dublings Dub

> Average wind speed: > 10 m/s (like offshore)

Solar: 2 600 – 2 800 fullload hours p.a. (only 1 000 in Germany)

Fe

With its Hydrogen Strategy and RePowerEU, the EU has committed to ambitious hydrogen infrastructure targets

Fev

EU HYDROGEN STRATEGY & REPOWEREU

10 million tonnes of domestic renewable hydrogen production by 2030

Especially Germany and UK pursue a progressive hydrogen infrastructure strategy; FCH and Hydrogen Europe studies predict >3,700 stations for 2030

EU HYDROGEN INFRASTRUCTURE

STATUS 2023

Fev

Hydrogen refueling infrastructure recently experienced strong growth

- Already having the largest share of H₂ stations in Europe, Germany intends to reach 400 stations by 2025, investing up to \$400 mn
- Especially in UK & Germany, infrastructure development is promoted by public-private partnerships
- FCH developed an H₂ station roadmap forecasting 750 (2025) / 3700 (2030) hydrogen fuel stations; Hydrogen Europe shows more progressive numbers with 4,500 stations by 2030
- Current H₂ stations are generally suitable for light-duty vehicles but new designs/upgrades are needed to fully support MD & HD vehicle refueling

1) FEV estimation based on numbers of individual countries

Śource: H2stations.org, h2-mobile, FCH, Hydrogen Europe, Shell, LBST, TÜV SÜD, Brintbiler; GOV.UK, CertifHY, h2me, theregister, h2moves.eu, MobilityHydrogenFrance, FEV

Starting with the first pipeline conversion in 2025, the hydrogen core network will be progressively built up until 2032 to a length of 9,700 km

PRESENTATION OF THE PLANNED EXPANSION OF THE GERMAN HYDROGEN NETWORK FROM 2025 TO 2030

- The ramp-up of the hydrogen network is a crucial factor in achieving advanced climate goals, given the current geopolitical situation and rapidly rising energy price
- The FNB Gas e.V. submitted a draft for the hydrogen core network expansion to the Federal Network Agency and the Federal Ministry for Economic Affairs and Climate Protection
- Goal: Grid operators will be able to commence the construction of hydrogen grids and the conversion of lines starting in 2025
- Key data of the planned hydrogen core network:
 - > Total length of the optimized core network: 9,700 km
 - Proportion of converted natural gas pipelines in the core network: about 60%
 - Investment costs: €19.8 billion
 - Feed-in capacity: 100 GW
 - Withdrawal capacity: 87 GW

THE ROLE OF HYDROGEN

IN THE TRANSPORT SECTOR

H y d r o g e n

DEVELOPMENT OF THE FINAL **ENERGY DEMAND**

>50 % of the energy demand in 2050 will still be provided by liquid hydrocarbons

Final energy carrier demand in transport sector (PJ)

By 2050, green hydrogen will be the most important final energy carrier for commercial vehicles in the EU

FINAL ENERGY CARRIER DEMAND – COMMERCIAL ON-ROAD VEHICLES

Final energy carrier demand in commercial vehicles (PJ)

Strong transformation of commercial vehicle fleet expected, with batteryelectric powertrains dominating

1) CO2 targets (tailpipe emissions values with 2019 as reference) based on regulation in force as of 03/2023, 2025 targets expected for HD vehicles only, 2030+ targets for MD & HD vehicles Source: FEV

© by FEV – all rights reserved. Confidential – no passing on to third parties

Fev

The interest in H2-ICE originated from off-road segment in Europe has spread out to various applications and regions around the world

WORLD INTEREST OVERVIEW

Main Drivers

- MD/HD market in Europe is pushing the development of hardware, esp. direct Injection system
- Hardware can be used in other classes as well and makes business case attractive
- Certain applications see major drawbacks for fuel cell
 - OFFROAD
 - AGRICULTURE
- For larger bore size dedicated injectors might be developed at a later timing but PFI solutions available soon

H₂-ICEs are increasingly considered as ZEVs by overarching regulations; some markets still do not include H2-ICEs but might adapt in future

H2-ICE - REGULATORY CONSIDERATION AS ZEV

EU	ик 💦	US	CN *:
 3 types of ZEVs: No combustion engine Combustion engine with less than 3-5 g/tkm¹) or 5-1 g/pkm¹) emissions from fuel according to Vecto simulation Fulfilled by pure H₂-ICE Combustion engine with less than 1 g/kWh tailpipe emissions according to EU 595/2009 Revised UN R49 (underlying test methodology) defines pure H2-ICE as 0g/tkm 	 UK does not (yet) plan to recognize H₂-ICE as ZEV as regulation excludes vehicles that emit any CO₂ or "harmful pollutants" Permission for H₂-ICE may occur due to industry interest and expected developments in EU 	 Federal: As of now not considered as ZEV New EPA proposal for CO₂ emissions defines H₂-ICE as ZEV and considers it to be relevant for heavy-duty applications ACT states: As of now H2-ICE not considered as ZEV by CARB Recently, discussions started to account H₂-ICEs as ZEVs 	 Currently, H₂-ICE is not recognized as NEV in China Calculation of CO₂ emissions using life cycle assessment (LCA) calculation is currently under discussion (would benefit H₂-ICE) Draft LCA calculation already released for passenger cars Introduction of LCA calculation for commercial vehicles is possible
New EU emission regulation expected to define H ₂ -ICE as ZEV	Not defined as ZEV yet – future alignment with EU regulation possible	 EPA GHG emission proposal (04/2023) CARB is actively discussing H₂-ICE 	Currently not defined as ZEV but possible introduction of LCA emission calculation would benefit H ₂ -ICE

1) Final value still under discussion

 H_2 -

ZE

2) ACEA /DG CLIMA: Based on calculated zero emissions from fuel consumption (ignoring carbon in lubricant oil & SCR)

Fev fev fev fev fev fe Fev ev fev ev fev fev fev fev fev FEV SERVICES FEV FEV FEV FEV FEV FEV FEV EXPERIENCE . PROJECTS . OUTLOOK feel evolution Fev Fev fev fev fev fev fev

FEV offers the full range along the hydrogen value chain from production support through to application development

Fev

propulsion

We are the innovation powerhouse for mobility, energy and software that fosters sustainability and a greater quality of life for all

- Hydrogen ICE and fuel cell development
 - Concept development
 - Series development
 - Aftertreatment
 - Calibration

Technical and strategic consulting

- Market analyses
- Feasibility studies
- Cost assessment
- Benchmarking

25 years of experience in hydrogen powertrain development

Publicly announced interest and investment in H₂-Engine development is now growing strongly amongst on-and off-highway industry players

Fev

Examples of successful cooperation with our customers

Fev

Fev

Fev

Reference project FEV propulsion Courtesy of JCB Ltd. Hydrogen combustion engine Demonstrator integration

Hydrogen ice integration 4.8 Lengine, 71 kW

FEV deliverables

- Concept development Engine commissioning and testing
- · Development of control software
- Commissioning support

Reference project FEV propulsion Courtesy of Cummins Inc. DI ENGINE DEVELOPMENT Hydrogen combustion DI engine development Conversion of a Cummins MD engine to H2 DI demonstrator **FEV** involvement

· Concept definition and design Thermodynamic simulation Manufacturing and procurement of new/modified components for H2 DI Engine commissioning, first firing and thermodynamic investigations on a test bench

Reference project FEV propulsion Courtesy of IVECO Group

Fuel cell demonstrator light commercial vehicle

FEV is development partner for the complete electrification of IVECO's LCV segment. Based on an early-stage battery electric vehicle of this development, FEV supported the design, build-up and commissioning of the fuel-cell demonstrator.

Highlights

 Mechanical electrical and thermal integration of hyundai fuel cell system and hydrogen tanks Gateway development and implementation FEV energy manager for fuel cell powertrains

FEV involvement

• LV & HV system specification (FC, tanks, PDU, ...) Geometrical integration into existing donor vehicle Electrical, hydrogen and functional safety concept Controls adaptation through RCP (mabx)

 Vehicle assembly and commissioning source: Neco Group, Hyundol Motor Corporation, FE

Reference project FEV propulsion DAKAR RACE! Fuel Cell for Battery Electric Vehicles (2021)

FEV & GCK to develop fuel cell rally car

Highlights

Development of complete fuel cell system 200kw Design Development

Testing Integration Fuel cell in specific environmen

Dust

- Race constraints Shocks
- Environmental conditions

Reference project FEV propulsion **Courtesy of Plastic Omnium New Energies**

150 kW Fuel cell development

Background Plastic Omnium New Energies is designing innovative Hydrogen solutions for zero-emission electric mobility. This is why PO New Energies is developing an advanced fuel cell system dedicated to heavy-duty vehicles, combining innovative fuel cell components and optimized manufacturing process.

FEV involvement

 System layout Mechanical design Simulation (thermal, structural and electrical) E/E development Functional safety SW development (in workshare with customer) Assembly of first prototype fuel cells Calibration Validation

Fev

Reference project FEV propulsion

NRMM: CONCRETE PLACEMENT EQUIPMENT FUEL CELL

NRMM: concrete placement equipment fuel cell

· Powertrain/propulsion concept

- Continuous and peak power demand according to use case
- Hybridization concept for entire electric
- propulsion system Hydrogen storage requirements
- Package feasibility concept
- Supplier suggestions FCS and radiator
- Tank system
- Battery and electric motor

Thermal efficiency of ~47% for future high technology package DI engine is foreseen for hydrogen internal combustion engines

HYDROGEN COMBUSTION ENGINE - OUTLOOK

© by FEV – all rights reserved. Confidential – no passing on to third parties

Rapidly growing hydrogen propulsion system testing facilities at almost every FEV testing center with outlook for growth by > 70 % until 2024

OVERVIEW OF KEY FEV HYDROGEN TEST CENTERS

© by FEV – all rights reserved. Confidential – no passing on to third parties

feel evolution