

Moments of Power: Analysing and Optimising Powertrains and Components under Stochastic Boundary Conditions

Future Propulsion Conference 2024, Solihull

Thomas Steffen, Reader

with contributions from James Flemming, Temi Jegede, James Knowles, Will Midgley

Moments of Power

Drive Cycles

- Why do we have drive cycles?
- How do they differ?
- What are common metrics?

Why Drive Cycles?

Drive cycles define the input boundary condition of a vehicle.

Unlike the driver inputs, a cycle works across different vehicles.

Speed (miles/h)

Time (seconds)

Current: WLTP

World Harmonised Light Duty Test Protocol (WLTP)

World Harmonised Light Duty Test Cycle 3a (WLTC)

Better cycle

7

- Different environments: low, medium, high, extra high speed
- Faster, more aggressive
- Global harmonisation
- \rightarrow Better, but not good enough
- → Adopted in the EU and Japan, but not the US

<u>DmitryKo</u> - Own work; created in Excel using test data from WLTP-DHC-12-07 [1], CC BY-SA 3.0, wikipedia

Speed Histogram

Common Measures:

- Average
- Standard Deviation
- Maximum
- Time at 0

Moments of Power

Vehicle Model

- Polynomial Model
- Moments

Vehicle Model

Road Load

$$F(v,a) = c_0 + c_2 v^2$$
$$P = Fv = c_0 v + c_2 v^3$$

Forces

- Tyre Friction
- Aerodynamic Drag
- (kinetic energy can be neglected)
- \rightarrow Polynomial Power

A. Bhave. H. Taherian: Aerodynamics of Intercity Bus and its Impact on CO2 Reductions, UAB - ECTC 2014.

Road Energy

Energy Over a Cycle

11

$$E = \int P(t) dt$$

= $\int c_0 v(t) + c_2 v(t)^3 dt$
= $c_0 \int v(t) dt$
+ $c_2 \int v(t)^3 dt$
= $c_0 l + c_2 T v_{RMC}^3$

Tyre Aero

Road Energy

heúrēka!

$$E = c_0 l + c_2 T v_{RMC}^3$$

2 Terms

- Tyre loss depends on distance (of course)
- Aero loss depends on the Root Mean Cube Speed (!)

$$v_{RMC} = \sqrt[3]{\frac{1}{T} \int v(t)^3 dt}$$

Related to the third moment (skewness): $\mu'_3 = v^3_{RMC}$

Simulation vs Analysis

- Same vehicle model
- But the model comes after integration

- \rightarrow more efficient
- → clear sensitivity (both to cycle & model)

Simplified Analysis

Not Simulation (what?), but analysis (why?)

Cycle:

- Mean Speed / Length
- **RMC Speed** v_{RMC}

Vehicle:

- Rolling Friction
- Drag Coefficient

Moments of Cycles

Moments of Power

Powertrain Model

- Polynomial Model
- Moments

Powertrain Model

Primary Power

 $Y(P) = y_0 + y_1 P + y_2 P^2$

Polynomial model:

- Idle drain y₀
- Raw efficiency y₁
- Overproportional / quadratic losses (e.g. resistive losses) y₂

Example: Nissan LEAF motor

Powertrain Energy

Primary Energy

$$E = \int Y(t) dt$$

= $y_0 T$
+ $c'_0 l + c'_2 T v^3_{RMC}$
+ $y'_2 \int v^2 a^2 dt$

Two New Terms:

- Idle losses y_0T
- Aggressiveness $\int v^2 a^2 dt$

This is also a new term not seen before.

Conventional Measure: Positive Kinetic Energy

$$PKE = \frac{1}{2} \int va^+ dt$$

measures braking losses and potential energy.

But it does not change if a cycle is sped up, causing harsher accelerations.

New Term:

$$\int v^2 a^2 dt$$

If the cycle is sped up, this terms grows proportionally. The faster an acceleration, the more it counts.

4 Drive Cycle Metrics

Based on standard models, the consumption has four key components. It predicts consumption and range using only parameters and statistics.

Idle Losses - Duration

 P_{idle} (const)

Tyre Losses - Distance

$$\overline{P}_{tyre} = k_t \overline{v}$$

Aero Losses - Aerodynamics

$$\overline{P}_{aero} = k_a v_{RMC}^3$$

Regen Losses - Aggressiveness

 $\overline{P}_{power} = k_p \mathbb{E}[v^2 a^2]$

With

Root mean cube:

$$v_{RMC}^3 = \mathbb{E}[v^3] = \mu'_3$$

Average:
$$\overline{v} = \mathbb{E}[v] = \mu$$

Mixed moment: $\mathbb{E}[v^2a^2]$

$$\mathbb{E}[v(t)] = \frac{1}{T} \int_{t=0}^{T} v(t) dt$$
$$k_a = \frac{A\sigma c_d}{2\eta}$$
$$k_t = \frac{mgC_{rr}}{\eta}$$
$$k_p = \frac{R_{phase}}{V_{DC}}$$

28

Moments of Power

Heavy Duty Application

- Engine Model
- Moment Model

Example Engine: Achates 10.6L

Polynomial Model

Linear regression model: $y \sim 1$ $+ n + n^2 + n^3$ $+ M^2 + M^3$ $+ nM + (nM)^2$ $+ n^2M$

35

Polynomial Model

Polynomial Model

37

Compare: UNECE WHSC

12 point "average cycle" But there is no such thing.

The data is sufficient to create a polynomial model.

		RMS	RMC
n	28%	34%	37%
Μ	17%	30%	39%
Ρ	7%	14%	19%

Future Research

More (easy)

- Fast dynamics $\left(\frac{d}{dt}a\right)$
- Hybrids & scheduling
- Component models
 - Motors
 - Engines
 - Gearboxes
- Wear & Degradation
 - Bearings
 - Batteries
- Simulink Library

Different

- 1. Include limits & discrete modes (gears, regen limit etc)
- 2. Include slow dynamics (thermal)
- 3. Include dynamic/adaptive control

Conclusion

- The use of moments in combination with polynomial models offers an **analytical** solution for energy consumption
- The applications are many and profound:
 - Analysis
 - Consumption Prediction
 - Operator Categorisation
 - Planning
 - Component Selection
 - Calibration

For questions, please contact Thomas Steffen <u>t.steffen@lboro.ac.uk</u>

You can find a video of a 2023 SAE (LDV) presentation on youtube:

