

Hydrogen fuel cells and measurement challenges

Dr Graham Smith

Future Propulsion Conference

Feb 2024

Hydrogen At NPL

- A public sector research establishment owned by the UK Government
- Impartial and independent
- Founded in 1900 with a mission to "bring scientific knowledge to bear practically upon our everyday industrial and commercial life"
- Over 800 scientists in over 440 laboratories
- The UK's National Metrology Institute responsible for maintaining, and developing new, measurement methods and standards

Fuel Cell Vehicles vs Hydrogen

- Broadly, fuel cell vehicles work
 - Performance
 - Durability
 - Saleability
 - Capital cost
- Supply of hydrogen an issue
 - Big contributor to TCO
 - Availability limitation to scale up

Scalability Scalable to 1 TW installed capacity by 2050

Cost Cost of hydrogen competitive with alternative energy vectors $\begin{array}{c} \textbf{Cleanliness} \\ \text{Meeting emissions targets to be} \\ \text{truly low carbon 20 } g_{\text{CO2}} \, \text{kWh}_{\text{LVH}^{-1}} \end{array}$

Future of Hydrogen

• Plans for hydrogen to be everywhere

- Will it all be suitable for hydrogen vehicles?
 - ✓ Availability
 - ✓ Lifecyle emissions
 - ✓ Cost
 - ✓ Pressure & temperature
 - ? Quality

% = hydrogen as proportion of total energy consumption in 2050

Hydrogen Quality

- PEMFC are damaged by impurities
 - Performance
 - Durability
- Standard for PEMFC hydrogen
 - ISO 14687 defines permissible hydrogen
 - 'Only' 99.97 % purity
 - Tolerance for sulphur 4 µmol mol⁻¹

Impact on PEMFC Performance

• Developed multi-component mixtures to simulate 'worst case' under the standard

Components	Chemical formula	Standard Concentration / µmol mol ⁻¹
Methane	CH ₄	10000
Toluene	C ₇ H ₈	31
Carbon monoxide (with ¹³ C)	¹³ CO	20
Carbon monoxide (with ¹² C)	¹² CO	0.20
Ammonia	NH ₃	9.8
Dichloromethane	CH ₂ Cl ₂	2.6
Total Sulphur	H ₂ S	0.34

• Experiments carried out 1 kW short stack at conditions representative of automotive PEMFC

Diagnostic Experiments

 Able to use isotopic labelling of CO to monitor poisoning processes inside of operating devices

 Performance loss when anode catalyst is covered more than ~ 30% by CO

Becker, Hans, et al. "Operando characterisation of the impact of carbon monoxide on PEMFC performance using isotopic labelling and gas analysis." Journal of Power Sources Advances 6 (2020): 100036.

- Impurities depend on mode of production
 - Electrolysis
 - Methane reforming

Impurity Sources

- Biomass
- & mode of storage and distribution
 - Hydrocarbons, ammonia, methane, biological materials
 - Blending?

Hydrogen Quality Assurance

Sampling Location	n.a.	Hydrogen Refueling Station—700 Bar	FCEV Sampling—1	
Sampling system	n.a.	H2 Qualitizer	NPL prototype	N
Sampling vessel	n.a.	10 L cylinder aluminum	10 L cylinder aluminum	c
	ISO 14687-2010	Spectraseal Massured amount	Spectrasean	dad .
Compounds	threshold (µmol/mol)	$(k = 2)/(\mu mol/mol)$		ueut
Nitrogen	300	24.7 ± 0.7	25.0 ± 0.6	
Helium	300	<14	<14	
Argon	300	0.870 ± 0.035	0.835 ± 0.031	
Water	5	1.27 ± 0.26	4.4 ± 0.9	
Oxygen	5	<0.5	< 0.5	
Carbon dioxide	2	< 0.020	< 0.020	
Methane	100	< 0.020	< 0.020	
Non-methane hydrocarbons	2	< 0.040	< 0.040	
Carbon monoxide	0.2	< 0.030	< 0.030	
Formic acid	0.2	< 0.040	< 0.08	
Ammonia	0.1	< 0.07	< 0.07	
Formaldehyde	0.2	< 0.05	< 0.05	
Total halogenated compounds ⁽¹⁾	0.05	< 0.032	< 0.030	
Individual organo halogenated compounds ⁽²⁾	n.a.	<0.0030	< 0.0030	
Total sulphur compounds (3)	0.004	< 0.0010	< 0.0030	

• Sample from a HRS, vehicle, process

• Use a range of analytical measurements to determine purity

• HRS are generally compliant but there are periodic quality issues reported

Bacquart, Thomas, et al. "First Hydrogen Fuel Sampling from a Fuel Cell Hydrogen Electrical Vehicle–Validation of Hydrogen Fuel Sampling System to Investigate FCEV Performance." Processes 10.9 (2022): 1709.

Purification

• Well established deblending and purification technologies

• Many have a high OPEX (& CAPEX) when considering small scale / HRS

 Some novel technologies being developed but unproven

Jackson, Colleen, et. al.. "Deblending and purification of hydrogen from natural gas mixtures using the electrochemical hydrogen pump." *International Journal of Hydrogen Energy* 52 (2024): 816-826.

Two Key Messages

1. Hydrogen quality is important consideration when considering supply of hydrogen

2. Hydrogen may be available everywhere in 2035 but not necessarily of quality for PEMFC

Acknowledgements

This work was funded by the UK Government's Department for Science, Innovation & Technology through the UK's National Measurement System programmes.

National Physical Laboratory

npl.co.uk/hydrogen

© NPL Management Limited, 2024