
University of HUDDERSFIELD

Inspiring tomorrow's professionals

Investigation of the effect of turboexpander on NOx emissions from a diesel engine

Farheen Fayaz Prof John Allport The University of Huddersfield

BACKGROUND >>> ME

ESULTS

AGENDA

AGENDA

Introduction	
Objectives	
Background	
Methods	
Results	
Conclusion	

INTRODUCTION

AGENDA

INTRODUCTION

OBJECTIVE

BACKGROUND

METHODS

 Road transport is one of the biggest sources of harmful pollutants.

RESULTS

CONCLUSION

University of HUDERSEIEI D

- NOx is one of the direct emissions from a vehicle.
- NOx is formed when combustion occurs in an internal combustion engine (ICE) at high temperature and pressure.

Lower the charge air intake temperature in diesel engines.

BACKGROUND

METHODS

- Reduce NOx emissions from as a result of lower intake temperatures.
- Develop an optimised charge air control system.

University of HUDDERSEIEI D

INTRODUCTION

AGENDA

➢ Air Cycle Technologies (ACT) have created a novel turboexpander which has previously been tested by ACT in gasoline race car engines to reduce pre-ignition.

OBJECTIVE

BACKGROUND

METHODS

RESULTS

Current work is being carried out to prove the useability of the ACT turboexpander in diesel engines to reduce NOx formation by cooling the intake air.

For this study, a 4.4 litre JCB-TCA 74 turbocharged diesel engine was retrofitted with an experimental ACT turboexpander.

AGENDA

INTRODUCTION

The study has been conducted empirically using formulae; experimentation and simulation.

METHODS

RESULTS

BACKGROUND

OBJECTIVE

CONCLUSION

University of HUDFRSFIF

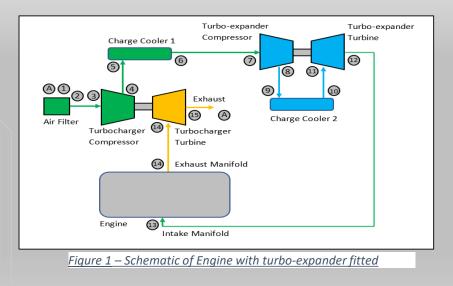
Hand calculations - Resulted in a self-contained spreadsheet wherein input parameters of the engine can be fed to the system.

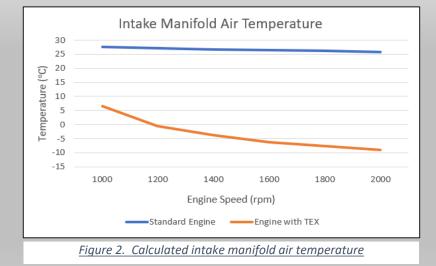
Experimentation – Test cell was set up to test and validate the hand calculations and spreadsheet data for the engine.

Simulation- Simcenter AMESim was used to validate the simulation model against test data and optimise the temperature control system.

RESULTS

AGENDA


Hand Calculations


INTRODUCTION

OBJECTIVE

BACKGROUND

METHODS

RESULTS

11

University of HUDDERSFIELD

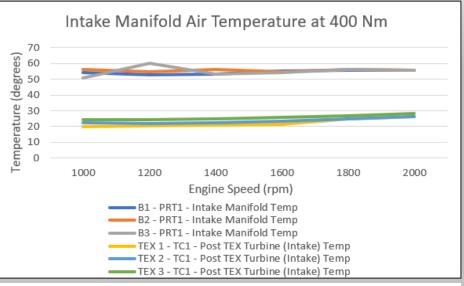
CONCLUSION

RESULTS Cont'd

AGENDA

Experimentation

INTRODUCTION


OBJECTIVE

BACKGROUND

METHODS

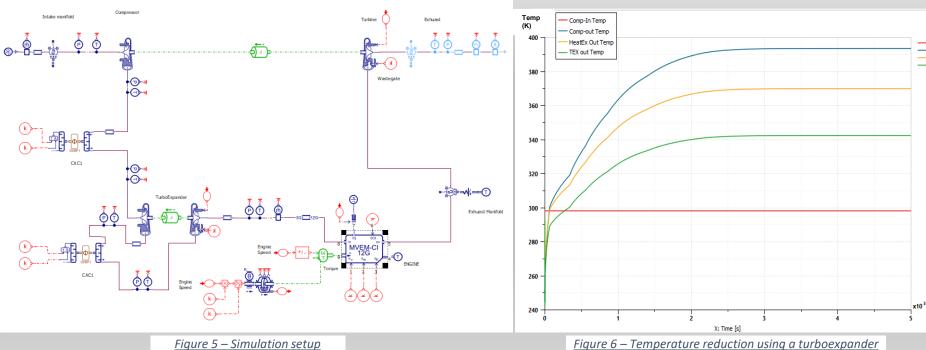
<u>Figure 3 – Test cell setup</u>

RESULTS

CONCLUSION

University of HUDDERSFIELD

Figure 4 – Intake manifold temperature comparison at 400 Nm


RESULTS Cont'd

INTRODUCTION

OBJECTIVE

Simulation

AGENDA

BACKGROUND

11

University of HUDDERSFIELD

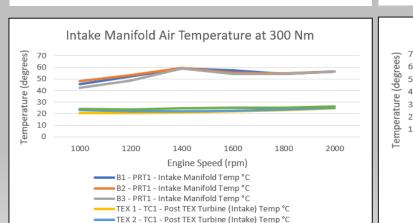
CONCLUSION

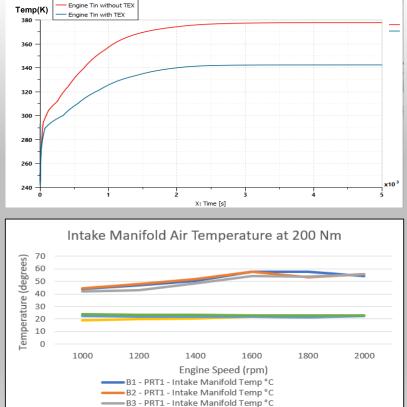
RESULTS

METHODS

BACKGROUND

METHODS


RESULTS


RESULTS Cont'd

 A reduction in intake temperature of up to 34 °C at 2000 rpm has been predicted.

TEX 3 - TC1 - Post TEX Turbine (Intake) Temp °C

- TEX 1 - TC1 - Post TEX Turbine (Intake) Temp °C

TEX 2 - TC1 - Post TEX Turbine (Intake) Temp °C

TEX 3 - TC1 - Post TEX Turbine (Intake) Temp °C

BACKGROUND

METHODS

RESULTS

RESULTS Cont'd

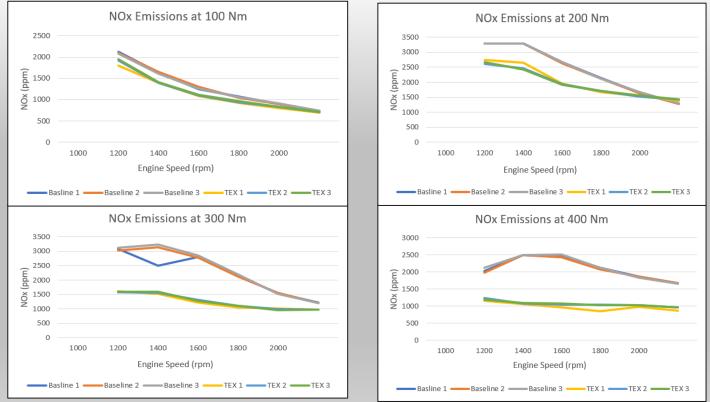


Figure 8 – NOx emissions comparison between engine with and without TEX

CONCLUSION

INTRODUCTION

OBJECTIVE

AGENDA

This study employs empirical formulae and simulation techniques via a spreadsheet and simulation software.

BACKGROUND

METHODS

RESULTS

CONCLUSION

11

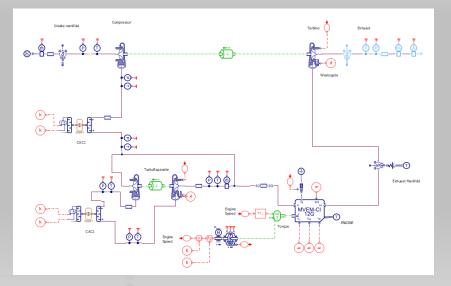
- The analysis presented in the study demonstrates a significant reduction of overall intake air temperature using the ACT turboexpander and subsequent reduction in NOx emissions.
- Considering the escalating stringency of emissions standards, the findings propose a forward-thinking approach to address the challenge of NOx emissions from internal combustion engines.

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•


•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
<td

Farheen Fayaz PhD Candidate University of Huddersfield Email: farheen.fayaz@hud.ac.uk

THANK YOU

