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Battery cell diagnostics Onversity S

Battery diagnostics is the measurement of the state of the battery.
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Other properties that can be measured include temperature and failure modes such

as internal lithium plating.
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Automotive- 55% of li-ion power production in
2020, possibly as high as 90% in 2030

Growing lithium-ion battery market

Stationary energy storage- grids/ micro-grids etc.

Covent

oniversity

y

Global EV fleet
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PED’s- laptops, cameras, mobiles, dominated by li-ion cells, 100’s of millions of devices annually

Other applications include Aerospace and Space

Li-ion battery power production was 22 GWh/y in 2010,
125 GWh/y in 2020 and could be 390 GWh/y in 2030

G. Zubi, R. Dufo-Lépez, M. Carvalho, G. Pasaoglu, The lithium-ion battery: State of the art and future perspectives, Renew. Sustain. Energy Rev. 89 (2018).
I. Tsiropoulos, D. Tarvydas, N. Lebedeva, Li-ion batteries for mobility and stationary storage applications, 2018.



Potential benefits of improved diagnostics Sﬂl\’,ee?stny%ﬁ

Battery pack cost
Battery pack market
average cost $137/kWh

Tesla model Y 75KWh dual
motor starts at $42000

Battery pack cost estimate
of $10275, approx. 25%

Battery size and weight

Reducing cost, weight and size without reducing performance is key for business case

and adoption.
Superior diagnostic methods could facilitate more optimally sized and utilised batteries.

Enhanced safety and supporting second life and swapping applications also possible.

Image credits: Tesla 5
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Composition 2

Existing typical real time measurement techniques take Liquid

external cell measurements

Temperature -

Coulomb counting most common, OCV and EVS are other

methods.
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Coulomb counting techniques develop SOC errors of at

least a few percent.
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Inaccuracies such as measurement, processing efficiency
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etc., plus grow over time due to open loop nature.

OCV and EVS measurements tend to be qualitative in the  d

information they provide

Relationship between a) phase diagram of material ‘M’ being ljthiated, b) voltage curve, c) IC and
d) DV

A. Barai, K. Uddin, M. Dubarry, L. Somerville, A. McGordon, P. Jennings, |. Bloom, A comparison of methodologies for the non-invasive characterisation of commercial Li-ion cells; K.S. Ng, C.-S. Moo, Y.-P. Chen,

Y.-C. Hsieh, Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries, Appl. Energy. 86 (2009); A. Vezzini, Lithium-lon Battery Management, in: Lithium-lon

Batter. Adv. Appl., Elsevier B.V., 2014; K. Movassagh, A. Raihan, B. Balasingam, K. Pattipati, A Critical Look at Coulomb Counting Approach for State of Charge Estimation in Batteries, Energies. 14 (2021)



Laboratory based techniques 88?\’/%?55% Ny

Generally require modified cells and/ or extensive equipment.

Examples include; Scanning electron microscopy, X-ray microanalysis, scanning ion

conductance, transmission electron microscopy and a variety of destructive testing.

-

a) High resolution TEM images of an Fes0, single crystal showing the spinel and rock-salt phases during
in situ Li intercalation, b) High resolution TEM electron energy loss spectra mapping of Ni**(green) and
Li* + Ni’(red) in a lithiated NiQ nanosheet at high-rate discharge

T. Shang, Y. Wen, D. Xiao, L. Gu, Y.-S. Hu, H. Li, Atomic-Scale Monitoring of Electrode Materials in Lithium-lon Batteries using In Situ Transmission Electron Microscopy 7



isting in-si i i Coventry
Existing in-situ techniques- in development Goventy ggg

Reference electrodes- difficult to place in production cell Colorimetry corresponding with SOC.
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E. McTurk, C.R. Birkl, M.R. Roberts, D.A. Howey, P.G. Bruce, Minimally invasive insertion of reference electrodes into commercial lithium-ion pouch cells 8

J. Hedman, D. Nilebo, E. Larsson Langhammer, F. Bjorefors, Fibre Optic Sensor for Characterisation of Lithium-lon Batteries



Sensing technology being utilised

Il. Nanocoating
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Polyamide coated fibre

A typical configuration for inducing SPPs- called
a Kretschmann-Raether configuration.

A thin metal film, such as gold, is deposited on
an optical prism.

50nm gold coated sensor

Sensing region length circa. 50mm

C. Caucheteur, T. Guo, J. Albert, Review of plasmonic fiber optic biochemical sensors: improving the limit of detection
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SEI layer formation

Parasitic reactions

Phase changes

Lithium concentration
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Reference: H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, X. Zhang, A review of recent developments in membrane separators for rechargeable lithium-ion batteries 10



Cell design- pouch cell
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Cell design- sensor placement Sﬂx,%?glty%;ﬁ

X-Ray of fibre sensor in cell- side profile 5mm width

Sensor placed adjacent to an anode in cell.

Image credits: Coventry University 12



Cell and Optics Unit (OU) system schematic Sﬂmeerr‘stw
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Image credits: C. Sundvall, E. Langhammer, I. Lofgren, A. Holmer, D. Westerlund, Operando Nanoplasmonic sensing —a means of improving battery control — WP2 Report- ACES Project, 2021 13



Optical signal response to cell state Sﬁl\\’/ee?stwgﬁ
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C. Gardner, E. Langhammer, W. Du, D.J.L. Brett, P.R. Shearing, A.J. Roberts, T. Amietszajew, In-Situ Li-lon Pouch Cell Diagnostics Utilising Plasmonic Based Optical Fibre Sensors, Sensors. 22 (2022) 14



OU signal and cell state correlation- C/5 Coventry &/,
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Negligible impact on cell performance- C/5
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= Measuring chemical changes and/ or lithium-ion concentration offers a variety of

possibilities.
= Enabling an unprecedented view into internal cell phenomena.
= Superior in-situ diagnostics could enable better optimisation of battery use and size.
= Could be used to recalibrate ‘open loop’ sensing methods.
= Detect failure modes like lithium plating or overheating in real time

= Providing battery state of health information- could be useful when re-purposing EV

batteries for energy storage, or help to enable ‘battery swapping'’.

18



Thank you for listening; any questions?

Contact details:

Wb

Christopher Gardner

C-ALPS

Coventry University

gardne62@uni.coventry.ac.uk

Industrial partner:

Elin Langhammer-

|ﬂSp|OI’IOﬂ Insplorion CTO

Covent
univers |rv

ﬂ sensors

Article
In-Situ Li-Ion Pouch Cell Diagnostics Utilising Plasmonic
Based Optical Fibre Sensors
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Abstract: As the drive to improve the cost, performance characteristics and safety of lithium-ion
batteries increases with adoption, one area where significant value could be added is that of battery
di . This paper d ents an i igation into the use of pl ic-based optical fibre
sensors, inserted internally into 1.4 Ah lithium-ion pouch cells, as a real time and in-situ diagnostic
technique. The successful implementation of the fibres inside pouch cells is detailed and promising
correlation with battery state is reported, while having negligible impact on cell performance in
terms of capnclly and columbic efficiency. The testing carried out includes standard cycling and

gal i titration technique (GITT) tests, and the use of a reference electrode to

f,:e;:":; correlate with the anode and cathode readings separately. Further observations are made around

Citation: Gardner, C.; Langhammer, the sensor and analyte interaction hanis: t of sensors and suggested further devel-

E; Du, W, Brett, DJ.L; Shearing, PR;  OPMents. These finding show that a plasmonic-based optical fibre sensor may have potential as an

Roberts, A.J.; Amietszajew, T. In-Situ pto-electrochemical di ic technique for lithi ion batteries, offering an unprecedented view
Li-lon Pouch Cell Diagnostics into internal cell phenomena.
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