Electric Motors for Electric Vehicles: Technologies and Market Outlook

Dr James Edmondson, Senior Technology Analyst, IDTechEx

About IDTechEx

REPORTS
SUBSCRIPTIONS
CONSULTING

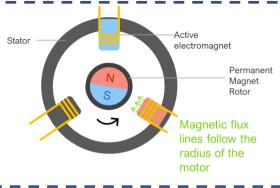
Technology appraisal


Market opportunity & requirements

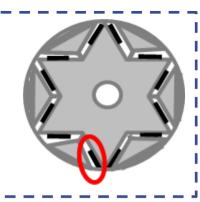
Commercialization strategy, partnership

Product launch & marketing

Ongoing analysis & trends



The Electric Motor Market


Summary of Traction Motor Types

- All have inherent pros and cons:
 - Power/ torque density
 - Costs
 - Critical materials

Brushless DC (BLDC)

Permanent Magnet Motor (PM)

Permanent magnets

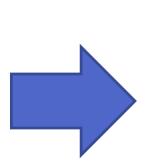
Magnet Free

Wound Rotor Synchronous Motor (WRSM)

AC Induction Motor (ACIM)

Switched
Synchronous Reluctance
Reluctance Motor (SRM)

Image sources: Renault, Shutterstock, IDTechEx


Tesla: Induction to PM/ ACIM Combo

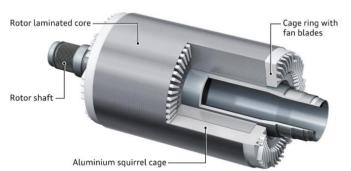
Source: Munro & Associates

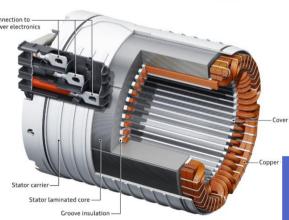
Source: Tesla

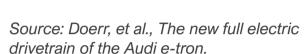
Source: Electronics Stack Exchange

Source: Tesla

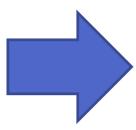
Audi: Induction to PM/ ACIM Combo


Property


Motor Type


Peak Power

(kWp)


Torque (Nm)

Front

ACIM

125

247

e-tron

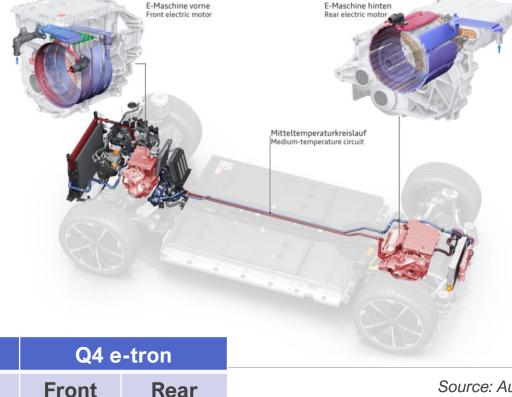
Rear

ACIM

140

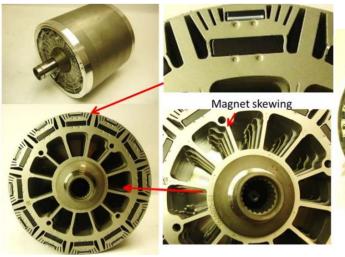
314

ACIM

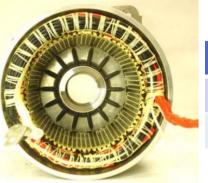

80

162

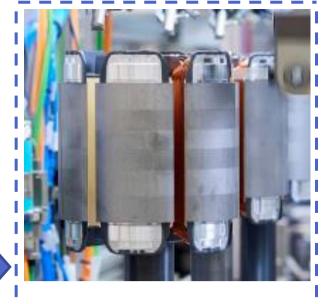
PMSM


150

310

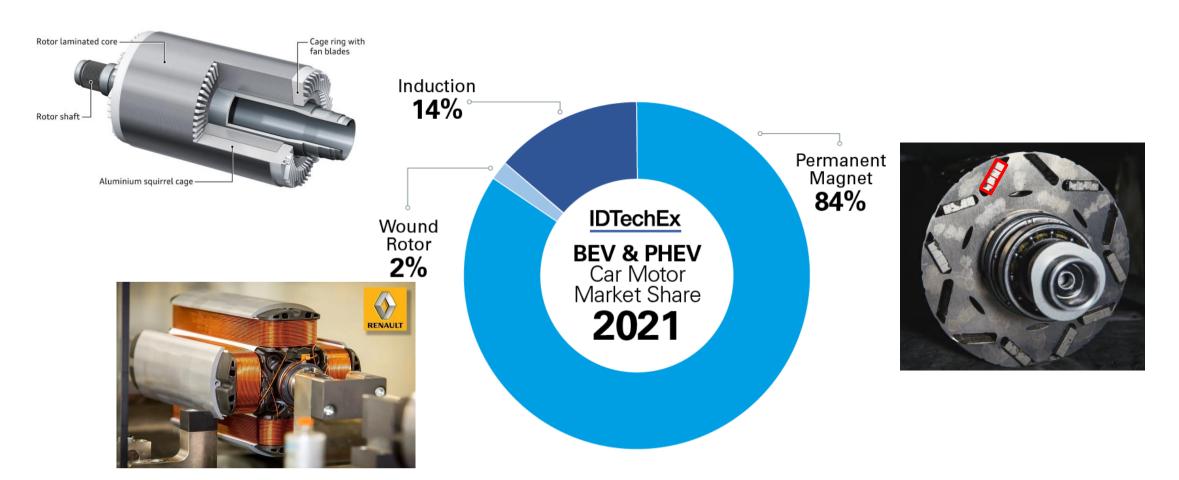


Source: Audi


BMW: PM to WRSM

Source: ORNL

	BMW i3
Power (kWp)	125
Torque (Nm)	250


Source: BMW

IDTechEx

Model	i4	i4 M50
Peak Power (kWp)	250	400 Combined
Peak Torque (Nm)	430	795 Combined

Copyright © IDTechEx. Use in accordance with distribution licence | www.IDTechEx.com

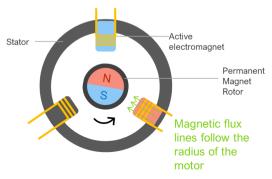
Motor Shares for the Car Market

Source: <u>Electric Car Sales, Models &</u> <u>Technologies Database</u>, IDTechEx

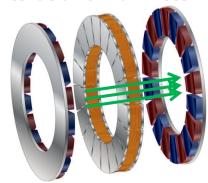
Image sources: Renault, Electronics Stack Exchange, Doer, et. al.

Emerging Alternatives

Radial Flux vs Axial Flux Motors


Advantages

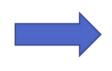
- Increased power and torque density
- Pancake form factor
- Potentially improved thermal management


Disadvantages

- Still has the price, heat and assembly problems of permanent magnets
- Manufacturing time is longer
- High costs in manufacturing

Radial flux motor

Exploded view of a torus axial flux motor

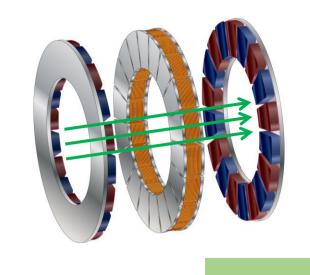


	BMW i3 motor	Magnax AXF225
Motor Type	HSM Radial Flux PM	Yokeless Axial Flux PM
Weight (kg)	46	16
Peak Power (kWp)	125	200
Peak Torque (Nm)	250	250
Magnet Weight (kg)	2	1.2
Power Density (kWp/kg)	2.7	12.5

Image sources: Shutterstock, IDTechEx

Axial Flux Motors Enter the EV Market

- Initially applied to hybrids with the aim of reducing costs by 5% and CO₂ under WLTP by 2.5 g.
- "Renault Group will be the first manufacturer to produce an axial flow electric motor on a large scale from 2025"
 Renault press release.


DAIMLER

- YASA has worked with Mercedes-Benz since 2019.
- Provide Mercedes-Benz's AMG.EA electric only platform with scope to continue development for the wider group.

Automotive Axial Flux Motors Demand

IDTechEx

Research

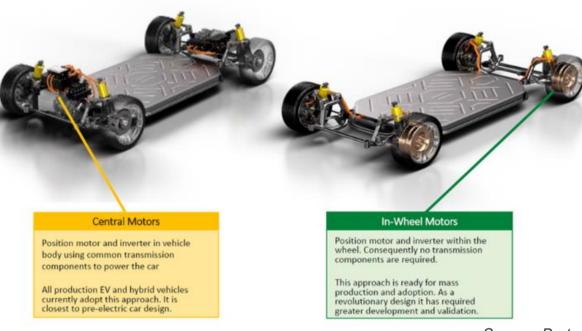
2021

2025

2032

Source: <u>Electric Motors for Electric</u> Vehicles 2022-2032, IDTechEx

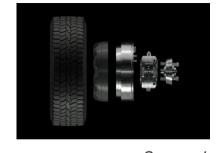
In-wheel Motors


Advantages:

- Torque control for each wheel
- No need for differential
- Torque vectoring and traction control enhancements
- In-wheel systems are more efficient at higher load
- Due to being exposed rather than inside the vehicle, cooling is potentially improved
- More space inside the vehicle by removing drivetrain components

Disadvantages:

- Unsprung mass
- Environmental durability
- Limited motor speed limits power density



Source: Protean

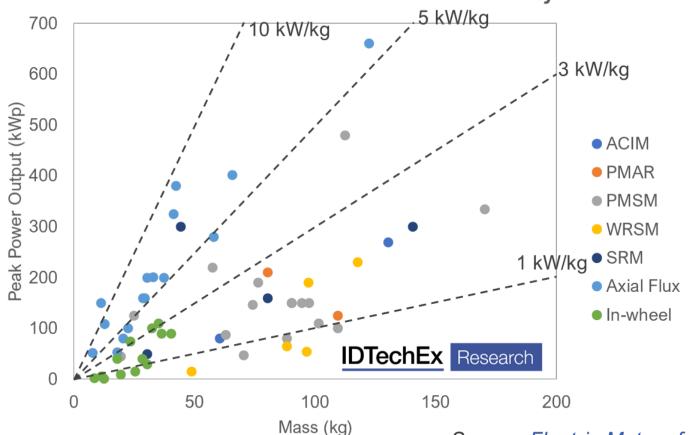
In-wheel Motors Enter the EV Market

- Lordstown's Endurance pickup truck uses 4 inwheel motors with tech licensed from Elaphe totalling 450 kWp.
- The Lightyear One is a long range solar electric vehicle.
- Aptera partnered with Elaphe for in-wheel motors for their 3-wheeled solar car.
- Local Motors is a company producing autonomous electric shuttles. They use 2 Pd18 inwheel motors from Protean to total 180 kWp. Local Motors ceased operations in 2021.

Source: Lordstown

Source: Lightyear

Source: Aptera



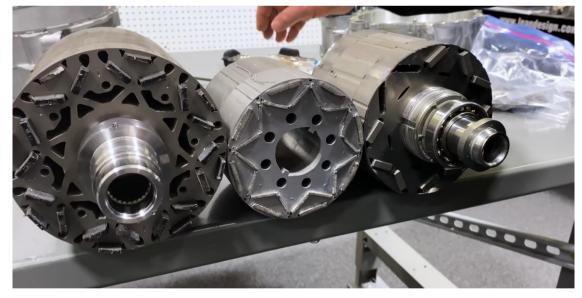
Source: Local Motors & Protean

Benchmark against BEVs

- Axial flux motors present power and torque density benefits.
- In-wheel motors tend to struggle with power density due to the limited speed. But have excellent torque density and other beneficial characteristics.

Source: <u>Electric Motors for Electric</u> <u>Vehicles 2022-2032</u>, IDTechEx

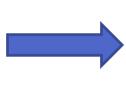
Rare Earth Magnets


Magnetic Material Distribution in Rotors

BMW i3. Source: ORNL

2016 Chevrolet Volt. Source: General Motors

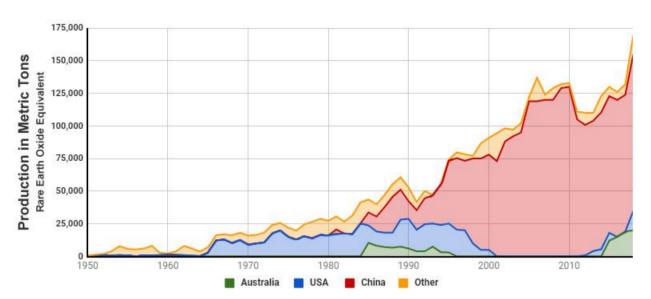


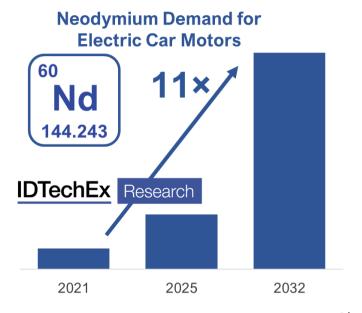

ID4

Leaf

Model 3

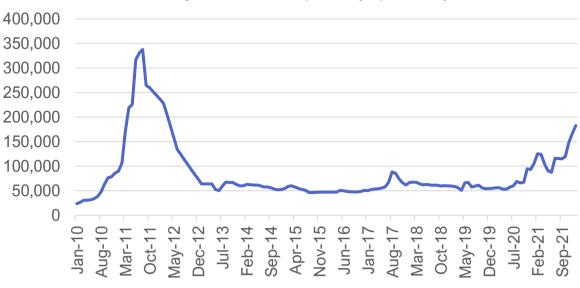
Source: Munro & Associates




2002, 2010 and 2017 Toyota Prius. *Source: ORNL*

Magnet Price Increase Risk

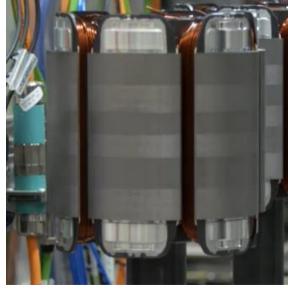
- China is the largest producer of rare-earth metals and hence controls supply and price.
- In 2011/2012 we saw massive price rises.
- Prices settled but are now increasing again.
- IDTechEx expects an 11 fold increase in demand for neodymium from EV electric motors.



Source: Geology.com

Source: <u>Electric</u> <u>Motors for Electric</u> <u>Vehicles 2022-2032</u>, IDTechEx

Neodymium oxide price (\$ per ton)


Data source: Trading Economics

Eliminating Rare-Earth Usage in Electric Motors

- Audi opted for the use of induction motors in the e-tron to avoid magnetic materials. However, their Q4 e-tron (shared platform with VW's MEB) utilises PMs.
- Renault utilise the WRSM motor originally provided by Continental so they only use copper for generating electromagnetic fields.
- The 5th generation drive train from **BMW** is rareearth free.
- Alternatives such as those presented by Advanced Electric Machines (AEM) providing a reluctance type motor free of magnets and copper.

Source: Doerr, et al., The new full electric drivetrain of the Audi e-tron.

Source: BMW Group

Source: AEM

Summary

- The electric motor market has largely converged on permanent magnet motors
- There are still trends happening with motor design and adoption of new designs
- Materials in EVs are a critical consideration and motors are a key part of this
- Future opportunity for motor cost reduction will largely be in the material choices

IDTechEx.com/Mobility

IDTechEx.com/Motors

IDTechEx

Supporting your strategic business decisions on emerging technologies

Dr James Edmondson, Senior Technology Analyst – IDTechEx Research@IDTechEx.com

Research

IDTechEx conducts detailed examinations of emerging technologies, which are delivered through our Market Research Reports and Subscription services.

Consulting

Our expert analysts deliver custom projects which identify markets, appraise technologies, define growth opportunities and perform due diligence.

Events

IDTechEx conferences and tradeshows match end users with the latest innovations, providing networking, sales and knowledge sharing.

Offices:

Europe: +44 1223 812300

Asia: +886 9 3999 9792

US and ROW: +1 617 577 7890

Asia (Japan): +81 3 3216 7209

www.IDTechEx.com