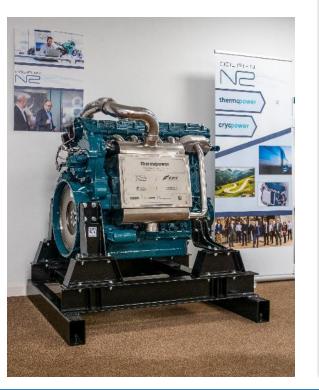
The Recuperated Split Cycle Engine: A practical Hydrogen solution for Heavy Duty?

Nick Owen, Technical Director, Dolphin N2 Future Powertrain Conference – 3rd March 2022


Dolphin N2: Established to commercialise the game-changing Recuperated Split Cycle Engine

Dolphin N2 Limited

- Established in 2017 to commercialise IP originating in the UK engineering company, Ricardo
- Acquired by FPT Industrial, part of the lveco Group, in 2019
- Based UK, ~35 staff
- Multi-cylinder prototype running since December 2020

Why?

- High thermal efficiency 55-60% BTE
- Low emissions NOx at SULEV or below with standard SCR
- Fuel compatible Diesel, Methane, Hydrogen
- Targeting heavy duty, longhaul sectors where most commercial vehicle CO₂ originates, and alternatives are most challenging...

© Dolphin N2 Limited 2022

CONFIDENTIAL

How it works: Recuperated Split Cycle Engine Re-thinking ICE thermodynamics for cleanliness and efficiency

The Basic Cycle

- Dedicated Cold & Hot cylinders of unequal size
- Insulation of hot cylinder
- Recuperation of exhaust energy
- Low-NOx Cool Combustion enabled by dense sonic intake air
- Cooled Compression

ThermoPower:

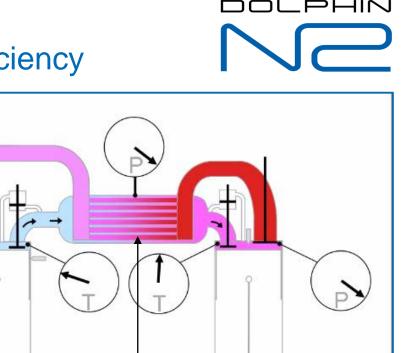
Trucks, NRMM, Shipping

- Water injected at ~33% fuel by mass
- Up to 55%BTE, SULEV

CryoPower:

© Dolphin N2 Limited 2022

Stationary Generation


- Liquid Nitrogen injected, 3x fuel by mass
- Near ~ZEV, ~60%BTE
- LiN made using wrongtime renewables

Recuperator

Compressor Cylinder

(2 off)

Combustor/Expander

Cylinder (4 off)

Running hardware (Diesel): "Mule" multi-cylinder engines were used to develop challenging mechanical systems – now validating thermodynamics

2017-20 Singles & Rigs

2021-22 Mule Engine


2022-3 Integration

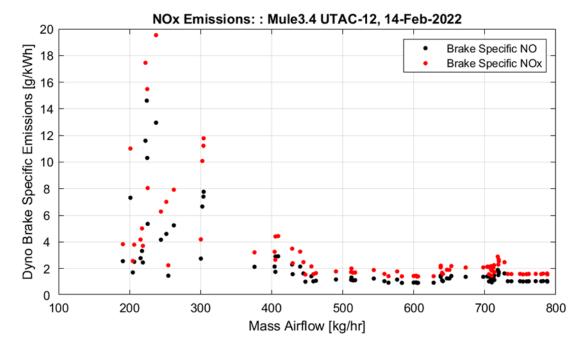
Titan: Single cylinder Expander (Brighton Uni), exploring combustion and thermodynamics

Hydra: Single cylinder Compressor (Brighton Uni), compression cooling

Breathing rig: Dynamic high pressure rig, exploring valvetrain and port performance (Sheffield Uni AMRC) **Mule Engine:** Multi cylinder 267kW unit, built on base hardware of two FPT engines

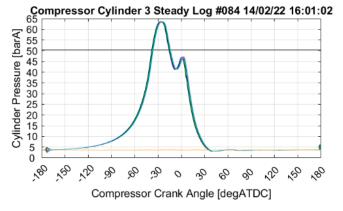
Development challenges overcome

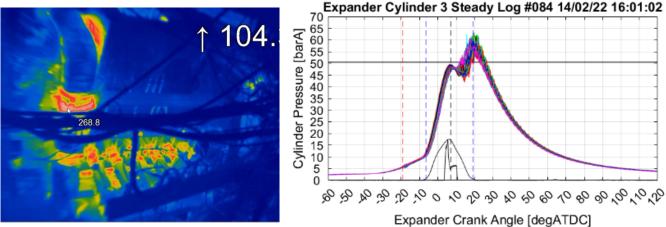
- Startability & warm-up transition
- Ceramic insulation durability
- Recuperator life at 70 bar 800°C
- Extreme thermal loads, piston & ring durability
- Valvetrain at 70 bar, <30deg open, 180deg VVT
- Boosting & airpath control



Integrated Engine Package compatible with 4-stroke Truck, off-highway, marine and powergen application

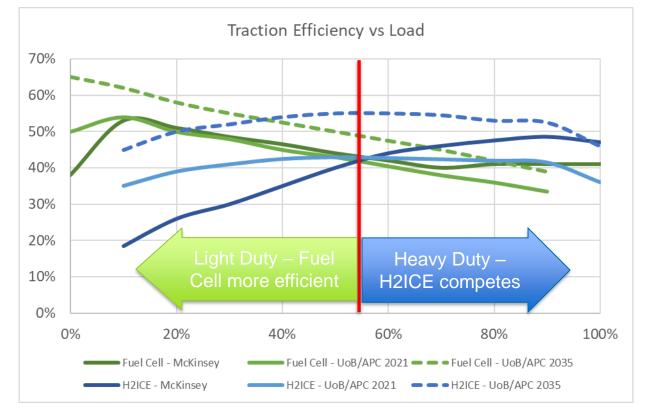
© Dolphin N2 Limited 2022


Results so far: Base engine delivers low NOx readily; development toward efficiency targets advancing


- Low NOx <2g/kWh achieved at a range of ratings up to high load (torque curve target ~1000kg/hr)
- Trigger for clean combustion found to be a function of high air density, high air temperature, and the right small quantity of trapped residuals
- Light load values represent running out of proper split cycle mode; development ongoing

 Indicated efficiency development is ongoing and on track to target; illustration of some key "levers" is below:

Compressor efficiency can be optimized via valve timings – in this case discharge opens too late, leading to pressure peak and negative work


Expander efficiency is driven by reducing recuperator heat loss, minimizing pre-TDC pressure, and developing faster burn

What about Hydrogen? Favoured on-highway fuel; RSCE is fairly fuel-agnostic

- Hydrogen is politically favoured as "alternative to electricity" for on-highway application
 - Readily produced from renewables, zero "source to tank" & net GHG (which matters)
 - Zero GHG at tailpipe (politically popular)
 - Fairly quick refuelling
 - Energy density acceptable with compromise
 - Suits both Fuel Cell and ICE creating critical mass of demand
- Hydrogen ICE works and is fast to adopt
 - Same supply chain, familiar servicing
 - NOx entirely manageable via lean burn
- And it suits Recuperated Split Cycle well...
 - In principle, "fast oxidation" combustion is fuel agnostic – violent mixing with red-hot sonic and supercritical air will burn many things
 - If Hydrogen can maintain BOTH high efficiency and low NOx, advantage is clear...

Fuel Cell vs Hydrogen ICE: Reports from McKinsey (2021) and APC / University of Brighton (2021) highlight how the higher loads of Heavy Duty might favour an efficient Hydrogen ICE

© Dolphin N2 Limited 2022

Chemical kinetics modelling suggested that Hydrogen combustion was feasible – though (unlike Diesel) an ignition source is needed

- 0-d, fixed volume Chemkin model used as an approximation to RSCE combustion
 - There are compromises in the simplifying assumptions, but the same approach had been found to correlate indicatively with Diesel test data
- Analysis performed for Hydrogen, Methane and blends
 - Bio-methane is another future fuel of interest, already growing in popularity in agricultural propulsion
- The model looked at HCCI auto-ignition, and spark ignited
 - Spark Ignited showed lower ignition temperatures and NOx formation
 - Pure HCCI impractical marginal ignition, and no possibility of a cold start
 - Dual fuel likely to lie between the two cases, some potential to minimise or turn off pilot fuelling at load

Results from compression (HCCI) strategy

high pre combustion temperatures required

HCCI nH 0.1 mole fraction Fuelφ0.4 60 atm	Minimum ignition temperature (K)	NOppm at peak temperature	NOppm at 5ms
CH4	1125	8.16	172.22
H2575	1100	7.28	137.50
H5050	1050	6.27	124.09
H7525	940	1.88	29.37
H2	1000	4.81	133.19

Results from Spark Ignition strategy

- Lower initial temperature required and lower overall NOx emissions

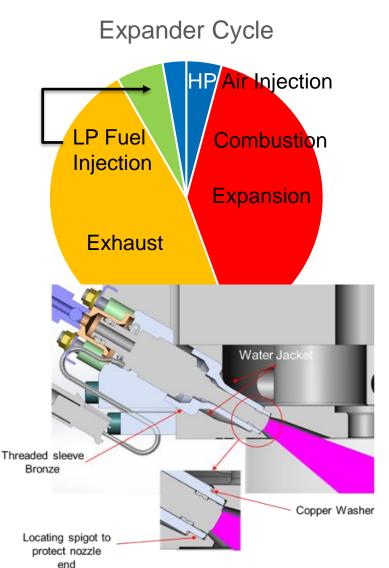
SI Fuel φ0.460 atm	Minimum igntion temperatu re (K)	NOppm at peak temperat ure	NOppm at 5ms
CH4	775	1.10	1.72
H2575	750	1.01	1.59
H5050	720	1.01	1.59
H7525	700	1.58	2.48
H2	600	3.08	4.84

Dolphin N2: Decarbonising Heavy-Duty Transport & Decentralised Power Generation

CONFIDENTIAL

A single-cylinder experiment was devised to validate Hydrogen combustion – practicalities of FIE and ignition dominate

Aims


- Can stable RSCE combustion be achieved? (misfire, knock)
- Can the same efficiency and low NOx as Diesel be achieved?

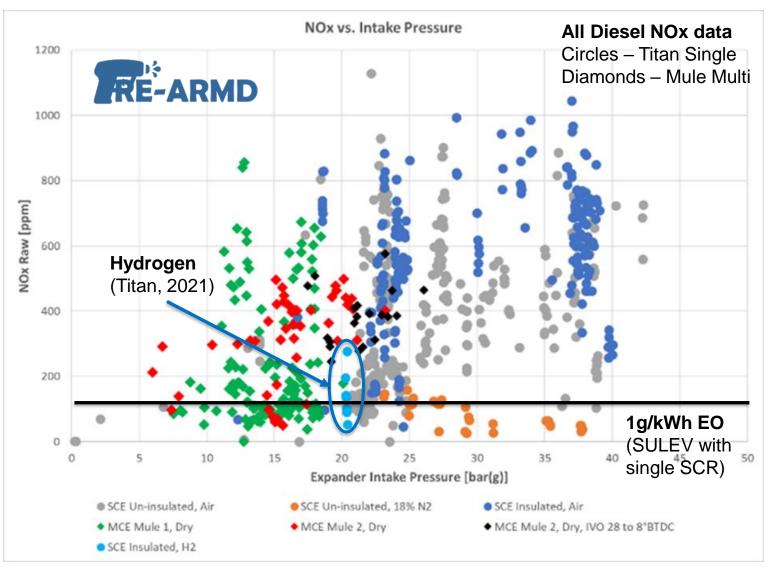
Approach – Single Cylinder Engine

- Dual Fuel (Pilot ignition) was selected as the most robust approach, as the engine was known to start and run on Diesel
 - Allowed progressive introduction of Hydrogen
- The original, central Diesel injector was retained
- And a new, Hydrogen injector added from the side of the chamber
 - Driven by package constraint; not ideal location but suitable for a basic validation experiment

Hydrogen injection

- Must be Direct Injection
- HPDI is ideal, but only one supplier, unit would not package
- LPDI (35 bar) injector used, with injection starting before the highpressure air
- This approach limits us to ~25% load

Low NOx emissions were validated by test results – equal to best Diesel calibrations from Single & Multi cylinder testing

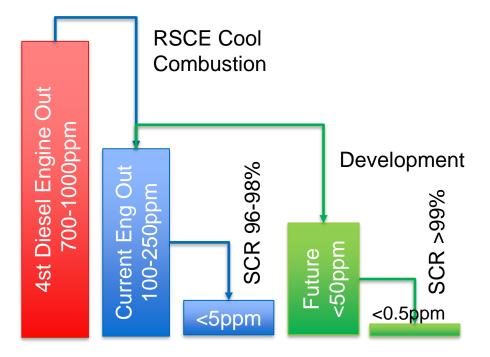


Split Cycle on Diesel

- These are engine-out emissions (no catalytic after-treatment)
- A typical modern Diesel truck engine produces 7-10g/kWh Engine Out (above the data band here)
- Best Split Cycle results on Diesel were below 1g/kWh EO – SULEV with SCR

How does Hydrogen compare?

- Operation limited to 20 bar air pressure, to get enough hydrogen in
- Energy input limited to 55% hydrogen to keep heat in the process
- But, **same low NOx readily achieved**, and no detonation or misfire seen



What this means – possible to get to SULEV NOx or below At this level, impact on human health is well below other threats

Aftertreatment – modelled performance (on Diesel)

- Chemical-kinetics model: Cu-SCR catalyst
- 97% without NH₃ surplus, 98-100% conversion at 1.1
- 5ppm is equivalent to SULEV (27mg/kWh)
 - Readily done
- 0.5ppm is attainable, this is $\sim 1000 \mu g/m^3 -$
 - Same as poor UK city ambient air cleaner!

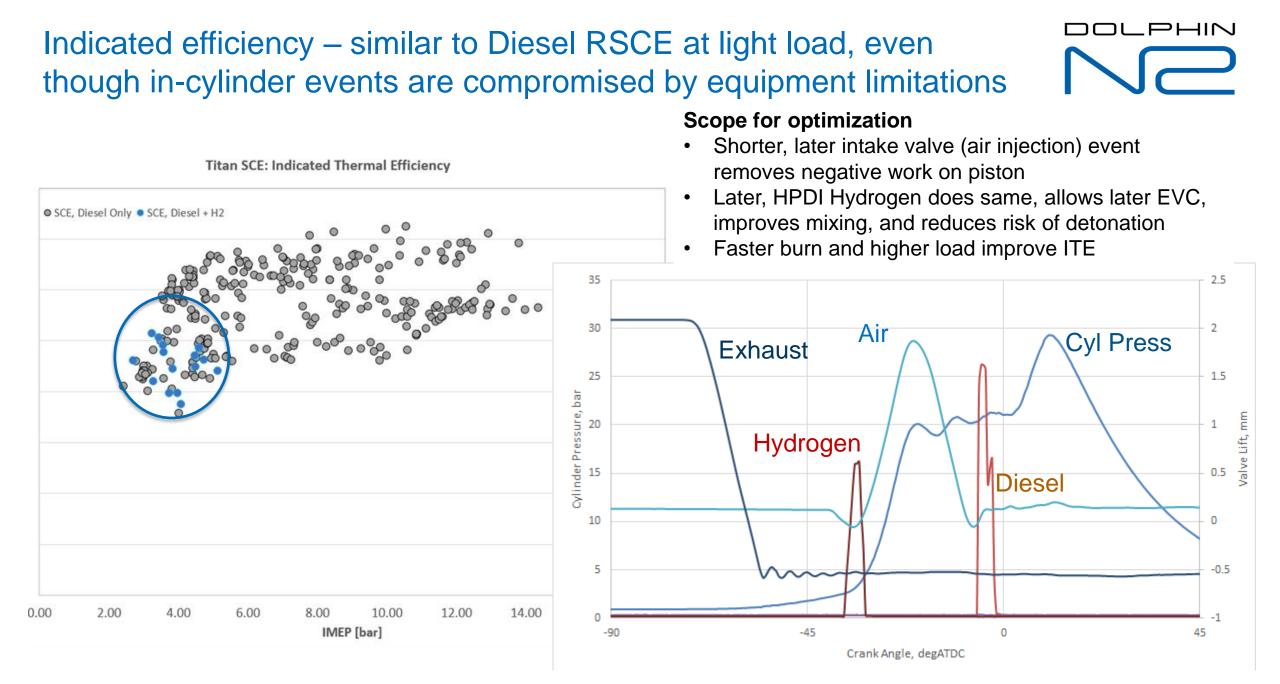
Emissions in Context

A study was performed for Dolphin by Ricardo Energy & Environment, using DEFRA factors to estimate human health impacts.

SULEV NOx vs EuVI: Converting the whole UK truck fleet would save ~4000 life-years per annum

SULEV NOx vs absolute ZEV: Cost is **253 life years**, equivalent to 3.5 hours of the average life.

In context:


٠

٠

- UK Covid-19 so far*:
 - Pandemic every 100yrs
- ~350,000 life-years 3,500 life-years
 - 76,000 life-years
 - Road traffic fatalities76,0SULEV HD NOx vs ZEV253
- SULEV HD NOX vs ZE
 10% SULEV futuro
- 10% SULEV future
- 253 life-years (~3.5h average) 25 life-years

Perhaps we should focus on things that save most lives?

Sources: Analysis by Ricardo E&E and Dolphin N2 Please note that estimates are subject to assumptions made. COVID data is from a year ago, Feb'21

© Dolphin N2 Limited 2022 Dolph

Dolphin N2: Decarbonising Heavy-Duty Transport & Decentralised Power Generation

CONFIDENTIAL

Conclusion: The Hydrogen ICE is a key enabler for Net Zero; Recuperated Split Cycle Engine offers a step ahead in efficiency

Hydrogen ICE as an enabler

- Capable of being clean (local air quality) including NOx
- Cheap, impurity tolerant, easy to make, integrate to vehicle, and service

Recuperated Split Cycle Engine as a step ahead

- Significant mechanical challenges of the base concept now being overcome
- Low NOx and efficient thermodynamics increasingly demonstrated
- Hypothesis that these can be achieved on any fuel validated with Hydrogen
- Potential to take on the Fuel Cell or simply help it into the market by justifying fuel infrastructure

Dolphin N2: Decarbonising Heavy-Duty Transport & Decentralised Power Generation

Next Steps

- 2022: Single cylinder testing of a spark-ignited system (limited load) Testing of HPDI dual fuel (full load range)
- 2023: Demonstration in vehicle

