

Virtualisation of Durability Studies For The New Era Of Vehicle Propulsion

Presented By David Briant Senior Project Engineer at Claytex

Copyright © Claytex Services Limited 2022

Who is Claytex?

- Engineering Consultancy
- Software Training
- Modelica Library Developers
- FMI Tool Developer
- Virtual test environments for ADAS and Autonomous
 Vehicles with rFpro
- Software Distributor
 - Dassault Systemes
 - rFpro
- Head office in the UK, offices in USA (NC & MI) and South Africa
- Acquired by TECHNIA January 2022

What we do

11.70

The Durability Problem

- Evaluating durability has been an enduring problem since the start of vehicle production
- The closer to release that physical durability testing, the more accurate the results
 - The earlier the testing the larger the differences to the final release
 - The later the testing the higher the cost to remedy any problems
- Changes to interdependent systems impacting loads
- Radical vehicle change reduces knowledge carryover
- 100k's miles to run a full cycle
 - Months to complete
 - Fuel and track usage costly
 - Heavy environmental impact
 - Multiple vehicle variants

Project Outline

What:

- International vehicle manufacturer
- Recreate dynamic powertrain durability study virtually
- Validate against logged data
- Process data to output to durability analysis program
- Allow enhancement, modification and expansion
- Back to back ICE vs Electric

How:

- Based on VeSyMA Suite in Dymola
- Virtualise every test
- Make each test adaptable
- Include protection against failures
- Automate library generation for new vehicle
- Run multiple simulations simultaneously

Vehicle Systems Modelling and Analysis (VeS

- Suite of Modelica libraries for Vehicle Systems
 Modelling and Analysis
- Models a variety of different vehicle layouts and types
- Application specific extensions provide detailed models across many areas
- Compatible with many other libraries including the Electrified Powertrains and Battery libraries
- Compare ICE vs Electric vehicles using same templates and sub-systems
- Built on the VehicleInterfaces open standard model architecture
- Open and modifiable

Experiment Breakdown

- The experiments follow the VeSyMA vehicle experiment templates.
- The experiments contain separate models for the:
 - Driver Controls the vehicle
 - Vehicle All physics of the vehicle
 - Trailer (optional) All physics of the trailer
 - Road Road surface and driving line
 - Atmosphere Environment parameters
 - Simulation Limits Stops simulation if limits are exceeded
- Each element, while self-contained is dependent on the other elements and elements like driver react to changes in the vehicle.
- 2 layouts used for all tests (with or without a trailer).

Driver Tasks Define Experiment

- Closed loop driver
 - Longitudinal and lateral control
 - Reversing with trailer
 - Gear/clutch control
- Conventional vehicle controls
- Not vehicle specific
- Test specification converted to sequence of tasks containing:
 - Condition (e.g. position, speed, gear, etc)
 - Action (e.g. accelerator position, target speed, gear)
- For example:
 - At mile marker 3 change into 3rd gear
 - When vehicle speed drops below 30mph, change to 2nd and accelerate at WOT to 50mph
- Driver terminates test when all steps complete

<mark>8</mark> E	dit Array for step	?	×								
⊞ s	itep										
Desc	ription										
Bas	se class to each step of the test sequence										
Rows 12											
	condition driverAction										
1	TestRecord.StartConditions.Time(comparisonType=1, atTime=2) 🗸	TestRecord.DriverAction.GearTargetOpen(source=TestRecord.Sources.Const(k=2)) V									
2	TestRecord.StartConditions.Time(comparisonType=3, atTime=2) <	TestRecord.DriverAction.AcceleratorOpen(source=TestRecord.Sources.Const()) V									
3	TestRecord.StartConditions.WithPrevious() 🗸	TestRecord.DriverAction.BrakeOpen(source=TestRecord.Sources.Const(k=0)) V									
4	TestRecord.StartConditions.Velocity(comparisonType=3, velocity=20) <	TestRecord.DriverAction.AcceleratorOpen(source=TestRecord.Sources.Const(k=0)) V									
5	TestRecord.StartConditions.WithPrevious() 🗸	TestRecord.DriverAction.GearTargetOpen(source=TestRecord.Sources.Const(k=3)) V									
6	TestRecord.StartConditions.Velocity(comparisonType=1, velocity=15) <	TestRecord.DriverAction.AcceleratorOpen(source=TestRecord.Sources.Const(k=1))									
7	TestRecord.StartConditions.Velocity(comparisonType=3, velocity=25) <	TestRecord.DriverAction.AcceleratorOpen(source=TestRecord.Sources.Const(k=0)) V									
8	TestRecord.StartConditions.WithPrevious() 🗸	TestRecord.DriverAction.GearTargetOpen(source=TestRecord.Sources.Const(k=4)) V									
9	TestRecord.StartConditions.Velocity(comparisonType=1, velocity=20) <	TestRecord.DriverAction.AcceleratorOpen(source=TestRecord.Sources.Const(k=1)) V									
10	TestRecord.StartConditions.Velocity(comparisonType=3, velocity=30) <	TestRecord.DriverAction.AcceleratorOpen(source=TestRecord.Sources.Const(k=0)) V									
11	TestRecord.StartConditions.WithPrevious() 🗸 📗	TestRecord.DriverAction.BrakeOpen(source=TestRecord.Sources.Const(k=0.05)) V									
12	TestRecord.StartConditions.Velocity(comparisonType=1, velocity=10) <	TestRecord.DriverAction.FinishTest() 🗸									
		OK Can	el								

Vehicles Models

- Based on VeSyMA templates
- Replaceable sub-systems
- Separate vehicle/sub-system orientations
- Allows mixed fidelities
- Import FMUs as controllers
- Mixed media system simulation
 - Multibody
 - Thermal
 - Fluid
 - Electrical

Copyright © Claytex Services Limited 2022

Source of Road Data

Roads virtualised in 3 ways:

- Lidar scanned road models are used for the "surface events"
 - e.g. potholes, speedbump
- High speed circuits created from measured GPS data
 - e.g. race tracks, high speed bowl
- Manually generated surfaces from facility specifications
 - e.g. gradients, banked circuits
- Same vehicle model
 - Multiple tyre contact models for efficiency
 - Non-scanned roughness defined by ISO standard

Alternate Contact Models and Road Data

FTire – High fidelity tyre and surface models

- Library of Lidar scanned surfaces in rFpro
 - Millbrook proving ground
 - IDIADA proving ground
 - Nürburgring
 - Race tracks
 - Public road surfaces

Incremental Development and Failure Modelling

- Fidelity of models match availability of data and development stage
 - Simple/Ideal/Table in early development
 - Higher fidelity when design is refined
- Subsystems developed independently
- Each subsystem has higher fidelity options

- Degraded/failed components can also be modelled
- Evaluate effect of degraded components to accelerate failures

Test Validation

- Each test contains automatic checks
- Dynamically checks if test is valid, for example:
 - Vehicle off course
 - Engine Stall
 - Battery out of charge
 - Trailer Jackknife
- Stops test if invalid
- Feedback provided
- Results able to be interrogated separately
- Opportunity to rerun individual tests and replace data
- If vehicle change required all tests inherit single change

Copyright © Claytex Services Limited 2022

Simulating Vehicle Durability

- Function to create virtualised durability study:
 - Pre testing vehicle evaluation:
 - Shift speeds
 - Maximum speeds
 - Max lateral acceleration
 - Results from evaluation parameterise tests
 - Generate library of tests using chosen vehicle
- Run multiple simulations simultaneously
- Run using GUI external to Dymola
- Repeatable and consistent results
- Repeating simulations with representative variation to eliminate data spikes

createTestLibrary Vel	nicle Parameters							
Description								
Create test library with	selected vehicle							
			VEIGUES					
Simulation Control								
intervalLength						0.01 s S	imulation interval le	ngth
Directory Control								
intoSubPackage		,	=true puts all files as a	sub package	of subPackageOf.	an existing packa	ace	
saveLocation			Location to save the pa	ckage if intoS	SubPackage=false	if empty, saved	to the working direct	ctory
subPackageOf		"SubPackageTest"	Pre-Existing package to	move create	d library into if inte	SubPackage=tru	e	
libraryName		"DurabilityStudy"	Name of library to be cr	eated				
openPackage		•	Open package in Dymol	a once create	ed			
Vehicle Model								
highSpeedVehicleModel		"VirtualTestDriver.Vehicles.Empty.	toadsterSportMT5Point"	 Car r 	model to be used in	n higher speed ex	periments	
lowSpeedVehicleModel	dVehideModel "VirtualTestDriver.Vehides.Em		r.RoadsterSportMTGrid"	 Car r 	model to be used in	n lower speed rou	gh input experimen	ts
highSpeedTrailerModel		"VirtualTestDriver.Trailers.	SingleAxleBraked5Point"	• Traile	er model to be use	d in higher speed	experiments	
lowSpeedTrailerModel		"VirtualTestDriver.Trailer	s.SingleAxleBrakedGrid"	 Traile 	er model to be use	d in lower speed r	ough input experim	ents
				OK	Info	Copy Call	Execute	Clo

Post Processing The Data

- Simulation data is like measured
- Exported as raw data
- Replication of data to account for number of cycles required
- Python-Dymola interface used to
 - Extract relevant data
 - Process it into correct format
 - Output to required file type
- File imported into degradation analysis software
- Simulation results validated against measured data
- Back to back comparisons ICE vs Electric

Thank You For Listening

Any Questions?

David Briant

david.briant@claytex.com

Copyright © Claytex Services Limited 2022