Imperial College T
London HEAVY INDUSTRIES

Optimal Control Strategy Analysis for Parallel
Gasoline Hybrid Electric Vehicles

Main Author: Andrew Law

Department of Mechanical Engineering, Imperial College London

Co-authors:

Imperial College London — Ricardo Martinez-Botas, Simos Evangelou
Mitsubishi Heavy Industries - Yasuaki Jinnai, Toru Hoshi, Motoki Ebisu
Mitsubishi Turbocharger and Engine Europe — Rogier Lammers
Universiti Teknologi Malaysia — Srithar Rajoo



Imperial College T
London HEAVY INDUSTRIES

Hybrid Powertrain: Full Parallel, Through-the-road

Vehicle hybridization serves as an exciting current platform in reducing emissions
from the transport sector through increasing electrification in vehicle powertrains
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Vehicle hybridization — Increasing Electrification in Powertrains
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Optimality in Parallel Hybrids

Vehicle hybridization — Increasing Electrification in Powertrains
Gap in timescales between power branches
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f Optimal engine operation in a parallel \
gasoline hybrid electric vehicle (HEV)

How do we balance between minimization
of fuel consumption/emissions and
K maximization of battery health? j
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Optimality in Parallel Hybrids: Criteria

1) Fuel Economy - Equivalent Fuel Consumption (EFC) )

HEYV utilizes both fuel and electrical energy.
For non plug-ins - Battery strictly a buffer source
* Engine link via direct charging or regenerative braking.

EFC: Fuel + Electricity = Single performance metric

Contribution

Increasing
battery health

Increasing fuel
consumption/emissions

» Energy

Goal: Minimize m,z. across drivecycle )
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Optimality in Parallel Hybrids: Criteria

[ 1) Fuel Economy - Equivalent Fuel Consumption (EFC) \ [ 2) Battery Degradation — State of Charge (SOC) \
*  HEV utilizes both fuel and electrical energy. * Prevent SOC oscillation between upper and lower limits
*  For non plug-ins - Battery strictly a buffer source * Limit degradation mechanisms in Li-lon battery
«  Engine link via direct charging or regenerative braking. SOC (%)
S
EFC: Fuel + Electricity = Single performance metric 80
o Strategy 1: Bad
Contribution 65 Numerous charge-
1 \ 50 discharge cycles.
S0C (%)
Increasing Increasing fuel 1
battery health consumption/emissions Strategy 2: Good
65 \/ * SOClevels
maintained
» Energy » Time
\ Goal: Minimize m,z. across drivecycle UAN Goal: Achieve charge-sustaining operation )
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Control Strategy Development: Process

[ Control strategies that facilitate optimal operation in a parallel HEV ]

( N\ ( )

Global optimization-based Strategies
J Optimization — Best-case vehicle performance
Global — Drive-cycle information known beforehand V S

Conventional Heuristic Strategies
Heuristic — Practical implementation for real-world
driving (Algebraic functions/rule-based logic)

x Complex optimization procedure

Unrealistic global criterion x Sub-optimal vehicle performance
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Control Strategy Development: Process

[ Control strategies that facilitate optimal operation in a parallel HEV ]

( N\ ( '

Global optimization-based Strategies
J Optimization — Best-case vehicle performance
Global — Drive-cycle information known beforehand V S

Conventional Heuristic Strategies
Heuristic — Practical implementation for real-world
driving (Algebraic functions/rule-based logic)

x Complex optimization procedure

Unrealistic global criterion 9 Sub-optimal vehicle performance

N\

Modern Heuristic Strategy
Develop novel rules to achieve great optimality in parallel hybrids
Maintaining ease of implementation
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Control Strategy Development: Novel Heuristic

* Torque-Leveling Threshold Changing Strategy (TTS)
» Propulsion Load Pp;, Battery SOC, Engine Speed w;¢g
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Control Strategy Development: Novel Heuristic

* Torque-Leveling Threshold Changing Strategy (TTS)
» Propulsion Load Pp;, Battery SOC, Engine Speed w;¢g
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Control Strategy Development: Novel Heuristic

* Torque-Leveling Threshold Changing Strategy (TTS)
» Propulsion Load Pp;, Battery SOC, Engine Speed w;¢g
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Simulation MethOdOIOQY = = =» |nformation Signal

* General c-segment parallel vehicle - High fidelity MATLAB — Power Flow
Simulink model
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Control Strategy Development: Results (1) For graphs, Lower = Better \
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Control Strategy Development: Results (1)
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Battery SOC simulation:
SOCinitia1 = 65%
SOCower = 50%
SOCypper = 80%

/Dashed — Global-optimized \

* Benchmark-case
VS
Black — Old Heuristic
* Preservation of fuel economy
leads to large SOC deficit
VS
Blue — New Heuristic (TTS)
* Long-term SOC resistance

\ achieved

/
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Control Strategy Development: Results (1) For graphs, Lower = Better
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For graphs, Lower = Better

Equivalent Fuel Consumption
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Control Strategy Development: Further Improvements

[ Control strategies that facilitate optimal operation in a parallel HEV ]

( ' ( )

S 2) Novel heuristic (TTS
1) Global optimization-based (GECMS) PracZicaI and easy to irr(1pler21ent
v/ Best-case vehicle performance -
A N D Improved performance over old heuristic
Complex optimization procedure

Unrealistic global criterion 2 Slight sub-optimal battery performance

(Pure heuristic definition limit)
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Control Strategy Development: Global Heuristic

[ Control strategies that facilitate optimal operation in a parallel HEV ]

( ) ( \

S 2) Novel heuristic (TTS
1) Global optimization-based (GECMS) Praciical and easy to in(1pler21ent
v/ Best-case vehicle performance -
A N D Improved performance over old heuristic
Complex optimization procedure

Unrealistic global criterion % Slight sub-optimal battery performance

(Pure heuristic definition limit)

End: Global Heuristic Strategy (Global TTS)

\/ Dedicated drive cycle optimization
AND
\/ Retaining rule-based simplicity and practicality
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Battery SOC simulation:
SO0Cinitiar = 65%
SOCower = 50%

SOCypper = 80%

/Dashed — Global-optimized \

* Benchmark-case
VS
Black — New Heuristic
* Strict heuristic definition
limit
VS
Blue — Global Heuristic
* Significant charge-
sustaining gains with

\ dedicated parameter tuniry

19



Imperial College
London

Control Strategy Development: Results (2)

ONew Heuristic OGlobal Heuristic

3ﬂm e |

]

w
T

Fuel Consumption
relative to Global-Opt
(%)

o

-6 b
Low X8 Medium X8 High X4 Extra High X4
Increasing Power Demand >
15 ONew Heuristic OGlobal Heuristic B Global-Opt
85 9°f
®)
>0 6 f
L2
oLll=m Ofm [OW (10w
Low X8 Medium X8 High X4 Extra High X4

MITSUBISHI

HEAVY INDUSTRIES

For graphs, Lower = Better
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Control Strategy Development: Results (2) For graphs, Lower = Better
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Optimality in Parallel Hybrids: Final Comparisons

[ Optimality in Parallel HEV ]

(Battery Cost Limited) T (Emissions Limited)
Zero Fuel Consumption Maximum Fuel Consumption

Minimum Battery Health Maximum Battery Health

[ Hybrid Fuel Economy ]

[ Maximizing battery health ]

OOId Heuristic  ONew Heuristic  OGlobal Heuristic

., B Battery ageing improvement Low Medium High Extra High

° (min. bound) X8 X8 X4 X4
SEg 10 —
Lg> Old > New Heuristic >4% >5% >0.1% >7%
€ Z 5
% 22X 5} e
2 gg |—| I New - Global Heuristic TTS >6.8% ~0% >3.9% >1.0%
S EO
TS5 =
§ 30 | — —

g~ 0 : e ] = old > Global Heuristic TTS >11.4% >50 | >0.4% >7.8%

O Low X8 Medium X8 High X4 Extra High X4

5

22



Imperial College T
London HEAVY INDUSTRIES

Optimality in Parallel Hybrids: Final Comparisons

[ Optimality in Parallel HEV ]
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Optimality in Parallel Hybrids: Future Development

[ Optimality in Parallel HEV ]
T (Emissions Limited)
Maximum Fuel Consumption
Maximum Battery Health

(Battery Cost Limited)
Zero Fuel Consumption
Minimum Battery Health

* Reducing current draw to further

I
I

I

I

: Other forms of battery degradation:
I

! reduce long-term battery ageing

= ( GECMS — Global optimized ) Correlates to lower operating temperatures
S _ i

T > \ J

é% Global TTS — Real-time Heuristic >

$ 3 ( - - ) How far can we deviate from optimality in the

= L SESIMPIEGIEtNSE ) service of further maximizing battery health?
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Deviating away from Optimality:
Reducing current to further maximize battery health
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E-booster Integration in
Turbocharged Gasoline ICE
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New Control Strategy:
TTS with current protection
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Optimality in Parallel Hybrids: Future Development

[ Deviating away from Optimality: ]

Reducing current to further maximize battery health (Emissions Limited)
I Maximum Fuel Consumption
Maximum Battery Health

E-booster Integration in New Control Strategy: [ | Utilizing high-response engine to
Turbocharged Gasoline ICE TTS with current protection | [ alleviate battery demand
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Deviating away from Optimality:
Reducing current to further maximize battery health

-
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Maximum Fuel Consumption
Maximum Battery Health

E-booster Integration in
Turbocharged Gasoline ICE

New Control Strategy:
TTS with current protection
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Deviating away from Optimality:

Reducing current to further maximize battery health

%
Utilizing high-response engine to
alleviate battery demand

E-booster Integration in
Turbocharged Gasoline ICE

New Control Strategy:
TTS with current protection

[
[

MITSUBISHI

HEAVY INDUSTRIES

(Emissions Limited)
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End of Presentation




