

# Optimal Control Strategy Analysis for Parallel Gasoline Hybrid Electric Vehicles

Main Author: Andrew Law

Department of Mechanical Engineering, Imperial College London

#### Co-authors:

Imperial College London – Ricardo Martinez-Botas, Simos Evangelou Mitsubishi Heavy Industries - Yasuaki Jinnai, Toru Hoshi, Motoki Ebisu Mitsubishi Turbocharger and Engine Europe – Rogier Lammers Universiti Teknologi Malaysia – Srithar Rajoo



### Hybrid Powertrain: Full Parallel, Through-the-road

**Vehicle hybridization** serves as an **exciting current platform** in **reducing emissions** from the transport sector through **increasing electrification in vehicle powertrains** 





### **Optimality in Parallel Hybrids**





### **Optimality in Parallel Hybrids**





### **Optimality in Parallel Hybrids: Criteria**

### 1) Fuel Economy - Equivalent Fuel Consumption (EFC)

- HEV utilizes both fuel and electrical energy.
- For non plug-ins Battery strictly a buffer source
  - Engine link via direct charging or regenerative braking.

### **EFC:** Fuel + Electricity = Single performance metric





### **Optimality in Parallel Hybrids: Criteria**

# 1) Fuel Economy - Equivalent Fuel Consumption (EFC) HEV utilizes both fuel and electrical energy. For non plug-ins - Battery strictly a buffer source Engine link via direct charging or regenerative braking. **EFC:** Fuel + Electricity = Single performance metric Contribution Increasing Increasing fuel battery health consumption/emissions Energy Goal: Minimize $m_{efc}$ across drivecycle





### **Control Strategy Development: Process**

### Control strategies that facilitate optimal operation in a parallel HEV

#### **Global optimization-based Strategies**

Optimization – Best-case vehicle performance Global - Drive-cycle information known beforehand



Complex optimization procedure Unrealistic global criterion

**VS** 

### **Conventional** Heuristic Strategies

Heuristic - Practical implementation for real-world driving (Algebraic functions/rule-based logic)



X Sub-optimal vehicle performance



### **Control Strategy Development: Process**

### Control strategies that facilitate optimal operation in a parallel HEV

### **Global optimization-based Strategies**

Optimization – Best-case vehicle performance Global - Drive-cycle information known beforehand



Complex optimization procedure Unrealistic global criterion



### **Conventional Heuristic Strategies**

Heuristic - Practical implementation for real-world driving (Algebraic functions/rule-based logic)



X Sub-optimal vehicle performance



### **Modern** Heuristic Strategy

Develop novel rules to achieve great optimality in parallel hybrids Maintaining ease of implementation





### **Control Strategy Development: Novel Heuristic**

- Torque-Leveling Threshold Changing Strategy (TTS)
  - Propulsion Load  $P_{PL}$ , Battery SOC, Engine Speed  $\omega_{ICE}$







### **Control Strategy Development: Novel Heuristic**

Torque-Leveling Threshold Changing Strategy (TTS)

• Propulsion Load  $P_{PL}$ , Battery SOC, Engine Speed  $\omega_{ICE}$ 





### **Control Strategy Development: Novel Heuristic**

- Torque-Leveling Threshold Changing Strategy (TTS)
  - Propulsion Load  $P_{PL}$ , Battery SOC, Engine Speed  $\omega_{ICE}$



300V

Battery

**Supervisory Control** 

System (SCS)



Information Signal

Power Flow

### Simulation Methodology

- General c-segment parallel vehicle High fidelity MATLAB Simulink model
- Model simulations 4 main segments of WLTP cycle
  - Low X8, Medium X8, High X4, Extra High X4

DC-DC

Converter and

DC Link

Run multiple iterations (xN) – Assess long-term robustness of fuel consumption vs battery degradation

Inverter/

Rectifier

Internal

Combustion

engine

PMSM/

**PMSG** 

transmission





### **Control Strategy Development: Results (1)**



For graphs, Lower = Better





**Control Strategy Development: Results (1)** 



Battery SOC simulation:

 $SOC_{initial} = 65\%$ 

 $SOC_{lower} = 50\%$  $SOC_{upper} = 80\%$ 

Dashed – Global-optimized

Benchmark-case

VS

Black - Old Heuristic

Preservation of fuel economy leads to large SOC deficit

/S

Blue – New Heuristic (TTS)

 Long-term SOC resistance achieved



### **Control Strategy Development: Results (1)**









TTS brings balance in fuel economy and battery degradation that old heuristic is lacking



### **Control Strategy Development: Results (1)**

For graphs, Lower = Better





### **Control Strategy Development: Further Improvements**

### Control strategies that facilitate optimal operation in a parallel HEV

### 1) Global optimization-based (GECMS)

✓ Best-case vehicle performance

Complex optimization procedure Unrealistic global criterion

# **AND**

### 2) Novel heuristic (TTS)

Practical and easy to implement Improved performance over old heuristic

Slight sub-optimal battery performance (Pure heuristic definition limit)



### **Control Strategy Development: Global Heuristic**

### Control strategies that facilitate optimal operation in a parallel HEV





**Control Strategy Development: Results (2)** 



Battery SOC simulation:

 $SOC_{initial} = 65\%$ 

 $SOC_{lower} = 50\%$ 

 $SOC_{upper} = 80\%$ 

Dashed - Global-optimized

Benchmark-case

VS

Black - New Heuristic

 Strict heuristic definition limit

VS

Blue – Global Heuristic

 Significant chargesustaining gains with dedicated parameter tuning



### **Control Strategy Development: Results (2)**







Battery ageing improvement (lower bound)

Low Medium High X8 X4 X4

New  $\rightarrow$  Global Heuristic TTS >6.8%  $\approx$ 0% >3.9% >1.0%



**Value of global heuristic = maximization of battery health** *Potential outperformance of global-optimized methods* 



### **Control Strategy Development: Results (2)**

For graphs, Lower = Better



-5



### **Optimality in Parallel Hybrids: Final Comparisons**





### **Optimality in Parallel Hybrids: Final Comparisons**









### **Optimality in Parallel Hybrids: Future Development**



E-booster Integration in Turbocharged Gasoline ICE



New Control Strategy: TTS with current protection



(Emissions Limited)

Maximum Fuel Consumption

Maximum Battery Health















# **End of Presentation**