System Level Power Electronics

Future Propulsion Conference 2022 2nd March 2022

Pete James Matt Taylor

Agenda

- Lyra overview
- Power Electronics
- Integration opportunities
- Challenges

Who are Lyra Electronics?

- Lyra Electronics was founded in 2011 to support the global adoption of electrification across many industries by investing in significant research and development of Power Electronics
- Currently 38 employees
- Organic growth and IP generation
- Turnkey design
 - Requirements capture
 - Simulation
 - Prototype design
- All engineering in house
 - Electronics
 - Mechanical
 - Software
 - Test and validation
 - Functional safety

- What do power electronics do?
 - convert AC to DC or DC to AC, increase or decrease the voltage, control energy flow
- Power electronics is the combination of embedded software and hardware which, in combination, represent the single point of control and 'intelligence' in electrification
 - Batteries while chemically complex are entirely passive
 - motors are complex interactions of magnetics, electricity and mechanics but, again, are entirely passive
- the hardware aspect of power electronics uses complex, rapidly developing materials science to manage the flow of electrical energy at very high power levels
- the software aspect of power electronics controls the hardware with extremely high accuracy to deliver power management to the entire electrical architecture

- More specifically, in all case power electronics act between
 - source, e.g. batteries, grid, PV, Fuel Cell
 - and load, e.g. batteries, motor, the grid, heater)
- There is a strong synergy between electronics, software and mechanical engineering
 - considerable advantage is gained from understanding all aspects
- In a conventional powertrain sense, power electronics are analogous to
 - the induction system, valve train and ECU
- The challenges and therefore the opportunities for development are legion
 - maximum efficiencies are realised when very small switching tolerances are enabled by the hardware and managed by software

LYRA ELECTRONICS

- as with many technologies it's easy to imagine that where we are now is the pinnacle
 - this is rarely the case
- Lyra believes power electronics today are as evolved as the Apple II was in 1979
 - in 1979 industry saw the status of computing as incredible
 - some companies saw the technology as only just beginning
- Evolution of Power Electronics
 - Transistor, Thyristor, MOSFET, IGBT, SiC, GaN
 - Synergy with Macintosh Computer to modern MacBook Pro
- industry is embracing electrification and yet power electronics is in its infancy

Power Electronics - Examples

- Motor drive inverter
 - Converts DC to AC
 - Controls current in the stator windings
 - Torque and speed
- Power electronics
 - Transistors switch in patterns
 - PWM to create sine wave current
 - Si MOSFETs high on resistance, fast switching
 - Si IGBTs fixed voltage drop, slow switching
 - Si Super Junction MOSFETs low on resistance, fast switching, limited voltage range
 - Si, limited temperature

CLYRA ELECTRONICS

Power Electronics - Examples

- Silicon Carbide (SiC) MOSFETs
 - Limited availability
 - High voltage
 - High switching speed
 - Low resistance (99%
 - Higher temperature
 - High cost of manufacture
 - Package limitations
 - EMC and Partial Discharge issues

Power Electronics – Next Steps

- Gallium Nitride (GaN) MOSFETs
 - Limited voltage
 - Very high switching speed
 - Low resistance (99.3% predicted efficiency)
 - Need vertical device (epitaxial growth difficult)
 - Poor robustness
 - EMC and Partial Discharge issues

Power Electronics – Next Steps

- Silicone on Sapphire
 - Standard manufacturing process
 - High temperature operation
- Diamond
 - Ultra low resistance
 - Ultra high switching
 - Ultra high temperature operation
- Additive manufacturing
 - Complex shapes
 - Very high power density

Power Electronics – Next Steps

- Passive components need to catch up
 - Capacitors
 - Low Inductance
 - Smaller
 - Longer life
 - Inductors/Transformers
 - Smaller
 - Better magnetics
 - Better insulation

Integration

- power electronics devices require
 - enclosure, cooling, mounting, connections
- integration with Motor (EDU)
 - currently the most undertaken route
 - leaves other essential components isolated despite similar technology
- integration is often driven by legacy 'departments' in the OEMs rather than the most appropriate point for system benefits
 - thermal management
 - copper mass
 - component count
 - packaging
 - operating efficiency

Challenges

- Many opportunities exist in the growth of power electronics

- component improvement
- increased technology in switching and control methodologies
- system based integration and design
- production and assembly methods
- Many challenges exist
 - relatively new technology means wisdom is rare skilled resource is hard to find
 - component availability
 - long term new technologies come with risk
 - short term global component shortage
- Lyra employs a design strategy which allows the core power electronics to be managed with variant controller architecture

Thank you

Lyra Electronics Ltd. www.lyraelectronics.com info@lyraelectronics.com

